

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION **SEMESTER I SESSION 2022/2023**

COURSE NAME

MOBILE ROBOTIC

COURSE CODE

: BEJ 44703

PROGRAMME CODE :

BEJ

:

:

EXAMINATION DATE

FEBRUARY 2023

DURATION

3 HOURS

INSTRUCTION

1. ANSWER ALL QUESTIONS

2.THIS

FINAL

EXAMINATION

IS

CONDUCTED VIA CLOSED BOOK

3.STUDENTS ARE **PROHIBITED**

TO

CONSULT THEIR OWN MATERIAL OR ANY EXTERNAL RESOURCES DURING THE EXAMINATION CONDUCTED VIA CLOSED

BOOK

THIS QUESTION PAPER CONSISTS OF FOUR (4) PAGES

CONFIDENTIAL

CONFIDENTIAL

BEJ 44703

- Q1 TECHRON SDN BHD is a company that provides large pond cleaning using autonomous mobile robot. The mobile robot uses encoder to get velocity, v and IMU to get angular velocity, w.
 - (a) Derive the mobile robot motion model equation.

(8 marks)

(b) Calculate the robot position at time t = [10s, 20s, 80s] given $v = 8ms^{-1}$, $\omega = 2 degs^{-1}$, initial x=5, initial y=8 and initial theta=20.

(8 marks)

(c) If the sensor noise for v and ω is 15 %, analyze how much percentage of error increases for each (x, y, θ) at time t = 10s.

(4 marks)

(d) Develop a python code to compute the mobile robot motion model.

(10 marks)

Q2 (a) Given the initial equation of a robot posterior is $bel(x_T) = p(x_{0:T}, m|z_{1:T}, u_{1:T})$. By using Bayes rule, total probability rule and Markov assumption, proof the Bayes filter equation of a robot posterior is as follows:

$$bel(x_t) = \eta p(z_T|x_T) \int p(x_T|u_T, x_{t-1}) bel(x_{t-1}) dx_{t-1}. \tag{10 marks}$$

(b) Evaluate the Bayesian filter equation in **Q2(a)** and derive a Kalman Filter equation for a correction function $p(z_t|x_t)$ and a prediction function $\int p(x_{t-1},u_t)Bel(x_{t-1})dx_{t-1}$

(10 marks)

CONFIDENTIAL

BEJ 44703

Q3 (a) Define grid map.

(5 marks)

(b) A grid map equation is given by:

$$p(m|x_{1:t},z_{1:t})$$

Derive a grid map algorithm (include the probability and binary Bayes filter) from the equation above.

(10 marks)

(c) Given by the observation sensor data $Z_{1:t}$ and localization data $X_{1:t}$ calculate the belief $Bel(m^{[xy]})$ of each 4-grid map in Figure Q3(c).

(10 marks)

Q4 (a) Define A* path-planning.

(2 marks)

(b) Explain the process of the Dynamic Window Approaches for the path-planning.

(3 marks)

(c) Evaluate the **FIVE** (5) differences between A* and the Dynamic Window Approaches for the path-planning.

(10 marks)

(d) A typical problem of the Dynamic Window Approaches (DWA) is given by **Figure Q4(d)**. Analyze the reason behind this problem and provide a solution.

(10 marks)

-END OF QUESTIONS -

3

FINAL EXAMINATION

SEMESTER / SESSION : SEM I 2022/2023 COURSE NAME

: MOBILE ROBOTIC

PROGRAMME CODE: BEJ

COURSE CODE

: BEJ 44703

Hits :4	Hits :3	
Miss:6	Miss:7	
Hits :9	Hits :10	
Miss:1	Miss:0	

Figure Q3(c)

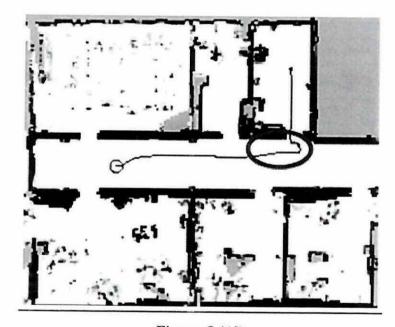


Figure Q4(d)