

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION SEMESTER I **SESSION 2022/2023**

COURSE NAME

ORDINARY DIFFERENTIAL EQUATIONS

COURSE CODE

: BEE 11203

PROGRAMME CODE : BEJ/BEV

EXAMINATION DATE : FEBRUARY 2023

DURATION

3 HOURS

INSTRUCTION

1. ANSWER ALL QUESTIONS

2.THIS FINAL EXAMINATION IS CONDUCTED VIA CLOSED BOOK.

3.STUDENTS ARE PROHIBITED TO CONSULT THEIR OWN MATERIAL OR ANY EXTERNAL RESOURCES **EXAMINATION** DURING THE CONDUCTED VIA CLOSED BOOK

THIS QUESTION PAPER CONSISTS OF SEVEN (7) PAGES

CONFIDENTIAL

BEE 11203

Q1 (a) Find a particular solution for the first order linear differential equation

$$e^x \frac{dy}{dx} + 2e^x y = 3,$$

given that y = 0 when x = 2.

(10 marks)

(b) Given

$$(4y + x^2)dy = (-2xy)dx$$

(i) Prove the above first order ordinary differential equation is non-homogenous. Show your calculation.

(4 marks)

(ii) Solve the above first order exact ordinary differential equation with initial condition of y(0) = 1.

(11 marks)

- Q2 A second order non-homogeneous ordinary differential equation is given as
 - (a) $\frac{d^2y}{dx^2} + 4y = 3\sin(2x)$. Find the general solution using the method of undetermined coefficient.

(12 marks)

(b) $2y'' - 5y' + 2y = 7xe^{2x}$. Find the general solution using the method of variation of parameters.

(13 marks)

Q3
$$y_1' = 5y_1 - 2y_2 + 2e^{3x}$$
$$y_2' = 3y_1 - 2y_2 + 10x - 5$$

is a system of first-order linear differential equations.

(a) Calculate the complementary function, Y_C , for the homogeneous system.

(10 marks)

(b) Calculate the particular integral, Y_P , for the non-homogeneous system.

(10 marks)

(c) Determine the general solution, Y, for the non-homogeneous system.

(1 mark)

(d) Obtain the particular solution for $y_1(x)$ and $y_2(x)$ with $Y(0) = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$. (4 marks)

CONFIDENTIAL

CONFIDENTIAL

BEE 11203

Q4 (a) Solve;

(i) the Laplace transform of function y(t) in Figure Q4(a)

(4 marks)

(ii) the inverse Laplace transform of

$$F(s) = \frac{s^2 + 5}{s(s^2 + 10)}$$

(6 marks)

(b) The RLC circuit which is initially at rest, is modeled as

$$L\frac{di(t)}{dt} + i(t)R + \frac{1}{C} \int_0^t i(\tau) d\tau = \begin{cases} 1, & t < 10 \\ 0, & t \ge 10 \end{cases}$$

with L = 1 H, $R = 0.4 \Omega$, and C = 8 F.

Determine the current i(t) using Laplace transform.

(15 marks)

-END OF QUESTIONS -

FINAL EXAMINATION

SEMESTER / SESSION : SEM I 2022/2023 COURSE NAME

: ORDINARY DIFFERENTIAL EQUATIONS

PROGRAMME CODE: BEJ/BEV

COURSE CODE : BEE 11203



Figure Q4(a)

Table 1: Second-Order Differential Equation

The roots of characteristic equation and the general solution for differential equation ay''(t) + by'(t) + cy(t) = 0.

Characteristic equation: $am^2 + bm + c = 0$.				
Case	The roots of characteristic equation	General solution		
1.	Real and different roots: m_1 and m_2	$y = Ae^{m_1t} + Be^{m_2t}$		
2.	Real and equal roots: $m = m_1 = m_2$	$y = (A + Bt)e^{mt}$		
3.	Complex roots: $m_1 = \alpha + \beta i, m_2 = \alpha - \beta i$	$y = e^{\alpha t} (A \cos \beta t + B \sin \beta t)$		

FINAL EXAMINATION

SEMESTER / SESSION : SEM I 2022/2023 COURSE NAME

: ORDINARY DIFFERENTIAL EQUATIONS

PROGRAMME CODE : BEJ/BEV

COURSE CODE : BEE 11203

Table 2: Particular Integral, Y_n based on f(x)

Type of $f(x)$	Example of $f(x)$	Assumption of y_p
Exponent	ke ^{nx}	Cenx
	k	С
5	kx	Cx+D
Polynomial	kx^2	$Cx^2 + Dx + E$
	kx"	$C_n x^n + C_{n-1} x^{n-1} + \ldots + C_1 x + C_0$
Trigonometry	$k\sin nx$ or $k\cos nx$	$y_p = C\cos nx + D\sin nx$
(sin and cos only)	$k \sinh nx$ or $k \cosh nx$	$y_p = C \cosh nx + D \sinh nx$
Product of polynomial and exponential	$P_n(x)e^{nx}$	$(C_n x^n + C_{n-1} x^{n-1} + \ldots + C_1 x + C_0)e^{nx}$
Product of polynomial and trigonometry	$P_n(x)\sin nx$ or $P_n(x)\cos nx$	$(C_n x^n + C_{n-1} x^{n-1} + \dots + C_1 x + C_0) \sin nx + (D_n x^n + D_{n-1} x^{n-1} + \dots + D_1 x + D_0) \cos nx$
Product of exponential and trigonometry	$ke^{nx}\sin nx$	$e^{nx} \left(C \cos nx + D \sin nx \right)$

CONFIDENTIAL

BEE 11203

FINAL EXAMINATION

SEMESTER / SESSION : SEM I 2022/2023

PROGRAMME CODE : BEJ/BEV

COURSE NAME

: ORDINARY DIFFERENTIAL EQUATIONS

COURSE CODE : BEE 11203

Table 3: Particular Integral, Yn based on G

Assume \mathbf{Y}_{p} based on \mathbf{G}					
Case	G	\mathbf{Y}_{p}			
Case I	Polynomial				
	$\begin{pmatrix} a_1 \\ a_2 \end{pmatrix}; \begin{pmatrix} a_1 x + b_1 \\ a_2 x + b_2 \end{pmatrix};$	$\begin{pmatrix} C \\ D \end{pmatrix}; \begin{pmatrix} Cx + E \\ Dx + F \end{pmatrix};$			
	$\begin{pmatrix} a_1 x^2 + b_1 x + c_1 \\ a_2 x^2 + b_2 x + c_2 \end{pmatrix}$	$\begin{pmatrix} Cx^2 + Ex + G \\ Dx^2 + Fx + H \end{pmatrix}$			
Case II	Exponent				
	$\begin{pmatrix} a_1 \\ a_2 \end{pmatrix} e^{kx}$	$\begin{pmatrix} C \\ D \end{pmatrix} e^{kx} \text{ if } \mathbf{Y}_{P} \equiv \mathbf{Y}_{C}, \text{ then}$ $\begin{pmatrix} C \\ D \end{pmatrix} x e^{kx} + \begin{pmatrix} E \\ F \end{pmatrix} e^{kx}$			
		$\binom{C}{D} x e^{kx} + \binom{E}{F} e^{kx}$			
Case III	Trigonometric (sin and cos only)				
	$\begin{pmatrix} a_1 \\ a_2 \end{pmatrix} \sin kx$ or $\begin{pmatrix} a_1 \\ a_2 \end{pmatrix} \cos kx$	$\binom{C}{D}\sin kx + \binom{E}{F}\cos kx$			

FINAL EXAMINATION

SEMESTER / SESSION : SEM I 2022/2023

COURSE NAME

: ORDINARY DIFFERENTIAL EQUATIONS

PROGRAMME CODE : BEJ/BEV

COURSE CODE : BEE 11203

Table 4: Laplace Transform

$\mathcal{L}\left\{f(t)\right\} = \int_0^\infty f(t)e^{-st}dt = F(s)$				
f(t)	F(s)	f(t)	F(s)	
а	$\frac{a}{s}$	$\int_0^t f(\tau)d\tau$	$\frac{F(s)}{s}$	
e ^{at}	$\frac{1}{s-a}$	H(t-a)	$\frac{e^{-as}}{s}$	
sin at	$\frac{a}{s^2 + a^2}$	f(t-a)H(t-a)	$e^{-as}F(s)$	
cos at	$\frac{s}{s^2 + a^2}$	$\delta(t-a)$	e^{-as}	
sinh at	$\frac{a}{s^2 - a^2}$	$f(t)\delta(t-a)$	$e^{-as}f(a)$	
cosh at	$\frac{s}{s^2 - a^2}$	$\int_0^t f(u)g(t-u)du$	$F(s)\cdot G(s)$	
$n = 1, 2, 3, \dots$	$\frac{n!}{s^{n+1}}$	y(t)	Y(s)	
$e^{at}f(t)$	F(s-a)	y'(t)	sY(s) - y(0)	
$t^{n} f(t),$ $n = 1, 2, 3, \dots$	$(-1)^n \frac{d^n}{ds^n} F(s)$	y"(t)	$s^2Y(s) - sy(0) - y'(0)$	

Table 5: Electrical Formula

No.	Item	Formula
1	Voltage drop across resistor, R (Ohm's Law)	$v_R = iR$
2	Voltage drop across inductor, L (Faraday's Law)	$v_L = L \frac{di}{dt}$
3	Voltage drop across capacitor, C (Coulomb's Law)	$v_c = \frac{q}{C}$ or $i = C \frac{dv_c}{dt}$
4	The relation between current, i and charge, q	$i = \frac{dq}{dt}$