

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION SEMESTER III **SESSION 2013/2014**

COURSE NAME

: ELECTRONICS

COURSE CODE

: DAR 21203

PROGRAMME

: 2 DAR

EXAMINATION DATE : AUGUST 2014

DURATION

: 3 HOURS

INSTRUCTION

: ANSWER FIVE (5) QUESTIONS

ONLY

THIS QUESTION PAPER CONSISTS OF THIRTEEN (13) PAGES

CONFIDENTIAL

Q1	(a)	Figure Q1(a) shows the voltage waveforms across each half of the secondary winding and across R_L when a 100V peak sine wave is applied to the primary winding.		
		(i)	Identify the type of this rectifier circuit.	(1 mark)
		(ii)	Define the type of stepped transformer it is used.	(1 mark)
		(iii)	Find the transformer turns ratio, n .	(1 mark)
		(iv)	Find the total peak secondary voltage, $V_{p(sec)}$.	(1 mark)
		(v)	Find the peak secondary voltage, $V_{p(sec)}$ across each half of secondary winding. (1 r	nalf of the
				(1 mark)
	(b)	For the circuit in Figure Q1(b);		
		(i)	Redraw the network diagram for positive half-cycle &	& negative
			half-cycle of v_i .	(4 marks)
		(ii)	Calculate the average value of output voltage, V_{AVG} .	(3 marks)
	(c)	transfo	dering the bridge rectifier in Figure Q1(c) . Assured the Assured Figure 12V rms secondary voltaged and 120V across the primary.	_
		(i)	Calculate the peak secondary voltage, V_p .	(2 marks)
		(ii)	Calculate the peak output secondary voltage, $V_{p(out)}$.	(2 marks)
		(iii)	Calculate the average value of output voltage, V_{AVG} .	(2 marks)
		(iv)	What PIV rating is required for the diodes?	(2 marks)

Q2	(a)	For the circuit that has a configuration in Figure Q2(a), determine the following values. Assume $\beta_{DC} = 200$.		
		(i)	Base current, I_B .	(2 marks)
		(ii)	Collector current, I_C .	(1 mark)
		(iii)	Collector-Emitter voltage, V_{CE} .	(2 marks)
		(iv)	Saturation current, $I_{C(SAT)}$.	(2 marks)
		(v)	Draw a DC load line and plot the Q-point.	(2 marks)
		(vi)	Determine the maximum peak variation of the collector	current,
			$I_{C(peak)}.$	(2 marks)
		(vii)	Determine the maximum peak variation of the base curr	ent,
			$I_{B(peak)}$.	(1 mark)
	(b)	For the	ne collector feedback bias circuit in Figure Q2(b) , find the s.	following
		(i)	Collector current, I_C .	(2 marks)
		(ii)	Collector-Emitter voltage, V_{CE} .	(2 marks)
		(iii)	Collector current, I_C if β_{DC} changed to 200.	(2 marks)
		(iv)	Collector-Emitter voltage, V_{CE} if β_{DC} changed to 200.	(2 marks)

Q3	(a)	Select a minimum value for the emitter bypass capacitor, C2, in Figure Q3(a) if the amplifier must operate over a frequency range from 200 Hz to 10 kHz.		
		10 KH	Z.	(4 marks)
	(b)	For th	e common-emitter amplifier in Figure Q3(b), solve the ite	ems below.
		(i)	Draw the ac equivalent circuit with complete labelling.	(4 marks)
		(ii)	Determine the ac emitter resistance, r_e '.	(2 marks)
		(iii)	Determine the input resistance at the base, $R_{in(base)}$.	(2 marks)
		(iv)	Find the attenuation from source to base.	(4 marks)
		(v)	Find the voltage gain from base to collector.	(4 marks)
Q4	(a)	Explai	in the amplifier classification.	(4 marks)
	(b)	Solve	the problems below.	
		(i)	For a class B amplifier providing a 20-V peak signal load (speaker) and a power supply of $V_{CC} = 30 \text{ V}$, determined power, output power, and circuit efficiency.	
			input power, output power, and entent efficiency.	(4 marks)
		(ii)	For a class B amplifier using a supply of $V_{CC} = 30$ V and load of 16- Ω , determine the maximum input power, out and transistor dissipation.	_
			and transistor dissipation.	(3 marks)
		(iii)	Calculate the efficiency of a class B amplifier for a support $V_{CC} = 24$ V with peak output voltages of $V_L(p) = 22$ V = 6V.	
			- 0 V.	(2 marks)
		(iv)	Calculate the input and output power for the circuit Q4(b) . The input signal results in a base current of 5 mA	

Q5

(a)

(b)

(c)

(v) If the circuit of Figure Q4(b) is biased at its center voltage and center collector operating point, what is the input power for a maximum output power of 1.5 W? (3 marks) Calculate the input power dissipated by the circuit of Figure Q4(b) (vi) if R_B is changed to 1.5 k Ω . (2 marks) Based on the FET circuit configuration shown in Figure Q5(a); Calculate the following data: (i) The Gate Voltage, V_G (4 marks) The Drain Current ,ID (ii) (2 marks) (iii) The Gate-to-Source potential difference, V_{GS} (1 mark) (iv) The Drain Voltage, V_D (1 mark) The Drain-to-Source potential difference , V_{DS} (v) (2 marks) State two (2) advantages of FET amplifier compared to BJT's (2 marks) Determine the following values for the given network shown in Figure Q5(c). (i) V_G, the Gate voltage (3 marks) V_{GS}, the Gate-to-Source potential difference (ii) (3 marks) Estimate the value of the Q-points (I_{DQ} and V_{GSQ}) (iii) (2 marks)

Q6	6 Given the JFET CS amplifier self-bias circuit configuration shown in			igure Q6;
	(a)	Draw the AC equivalent circuit for the given circuit configuration complete labelling		
				(4 marks)
	(b)	Determine the following data if $I_{DSS} = 9mA$ and $Vp = -4.5V$, $Vin = 20mV$ and the value of Drain internal resistance (rd) can be neglected.		
		(i)	The input impedance, Z in	(3 marks)
		(ii)	The output impedance, Z $_{\rm o}$	(3 marks)
		(iii)	The output voltage, V_o	(5 marks)
		(iv)	The Voltage gain, A _V	(5 marks)
Q7	(a)	For the Colpitts CB oscillator circuit as shown in Figure 7(a), calculate the following data;		
		(i)	Frequency of the oscillator.	(4 marks)
		(ii)	The value of feedback fraction, Beta.	(4 marks)
		(iii)	The minimum value of voltage gain, Av, for the oscillator	r to start. (2 marks)
	(b)	For the 555 Timer circuit shown in Figure 7(b) , determine the following requirements;		
		(i)	The frequency of the output signal	(4 marks)
		(ii)	The Duty cycle	(4 marks)
		(iii)	The output waveform	(2 marks)
			- END OF QUESTION –	

SEMESTER/SESSION: SEM III/2013/2014

PROGRAMME : 2 DAR COURSE CODE: DAR 21203

COURSE NAME : ELECTRONICS

FIGURE Q1(a)

FIGURE Q1(b)

SEMESTER/SESSION: SEM III/2013/2014 COURSE NAME : ELECTRONICS

N: SEM III/2013/2014 PROGRAMME : 2 DAR : ELECTRONICS COURSE CODE : DAR 21203

FIGURE Q1(c)

FIGURE Q2(a)

SEMESTER/SESSION: SEM III/2013/2014

PROGRAMME : 2 DAR COURSE CODE: DAR 21203

COURSE NAME : ELECTRONICS

> $V_{\rm CC}$ +10 V $10\,\mathrm{k}\Omega$ $R_{\rm B}$ ₩ 180 kΩ $\beta_{DC} = 100$ 0.7 \

FIGURE Q2(b)

SEMESTER/SESSION: SEM III/2013/2014 COURSE NAME : ELECTRONICS PROGRAMME: 2 DAR COURSE CODE: DAR 21203

FIGURE Q3(b)

FIGURE Q4(b)

SEMESTER/SESSION: SEM III/2013/2014 COURSE NAME : ELECTRONICS PROGRAMME: 2 DAR COURSE CODE: DAR 21203

FIGURE Q5(a)

FIGURE Q5(c)

SEMESTER/SESSION: SEM III/2013/2014 COURSE NAME : ELECTRONICS PROGRAMME: 2 DAR COURSE CODE: DAR 21203

FIGURE Q6

FIGURE Q7(a)

SEMESTER/SESSION: SEM III/2013/2014 COURSE NAME : ELECTRONICS PROGRAMME: 2 DAR COURSE CODE: DAR 21203

FIGURE Q7(b)