

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION SEMESTER III **SESSION 2013/2014**

COURSE NAME

: SEPARATION PROCESS

TECHNOLOGY

COURSE CODE

: DAK 21703

PROGRAMME

: 2 DAK

EXAMINATION DATE : AUGUST 2014

DURATION

: 3 HOURS

INSTRUCTION

: ANSWER FOUR (4)

OUESTIONS ONLY

THIS QUESTION PAPER CONSISTS OF ELEVEN (11) PAGES

CONFIDENTIAL

- Q1 (a) State both solute (component B) and carrier (component A) in each example below:
 - (i) Oil in a sunflower seed
 - (ii) Solid insoluble oxide containing Na₂CO₃
 - (iii) Decaffeinated coffee powder

(6 marks)

- (b) A feed of 5436 kg/h of a 25 wt% solution of p-dioxane in water is to be separated continuously with 4806 kg/h of benzene. The distribution coefficient, K'DB is 1.35. Assuming benzene and water are mutually insoluble, determine the percentage (%) of recoveries for the following alternative procedures:
 - (i) Two stage countercurrent cascade

(5 marks)

(ii) Three stage crosscurrent cascade

(5 marks)

(iii) If the loss due to unextracted p-dioxane is RM5/kg, calculate the loss for each procedures above

(4 marks)

(c) Sketch a solid-liquid extraction diagram complete with its four (4) streams symbolized by F, E, R, S and all its related components (A, B, and C) (5 marks)

- Q2 (a) State the best choice of device between a trayed and a packed column for the statements below:
 - (i) Column diameter is less than 2 ft
 - (ii) Column height is less than 20 ft and low pressure drop
 - (iii) Pressure drop above 200 psia and low liquid velocities
 - (iv) High degree of separation required

(8 marks)

(b) A feed gas to an absorber containing 17 mol% CO₂ and 83 mol% air, is to be absorbed in a 5.0-N solution of triethanolamine (or amine), containing 0.04 mol CO₂ per mole of amine solution. The column operates isothermally at 25°C, and the exit liquid contains 87.4% of the CO₂ in the feed gas to the absorber, and if absorption is carried out in a six (6) theoretical plate column, use equilibrium data below to:

Table Q2 (b)

Equilibrium Data							
V	0.003	0.008	0.015	0.023	0.032	0.043	
V	0.003	0.02	0.03	0.04	0.05	0.06	
1 0.01 0.02 0.02							
	Equilibrium Data						
X	0.055	0.068	0.083	0.099	0.12		
V	0.07	0.08	0.09	0.10	0.11		
	0.07						

(i) State the value of X_0 , Y_{N+1} , and Y_1

(3 marks)

- (ii) Calculate the exit gas (top product) composition in terms of mol% (4 marks)
- (iii) Plot the equilibrium curve of Y versus X

(4 marks)

(iv) Determine the value of X_N from trial and error method, using the value of Y_{N+1}

(3 marks)

(v) Determine the moles of amine per mole of feed gas

(3 marks)

- A stream feed of five hundred and forty lbmol/h of a mixture of 60 mol% benzene (LK-component x) and 40 mol% toluene (HK-component y) is to be separated to produce a liquid distillate and a liquid bottoms product of 90 mol% and 10 mol% benzene respectively. The feed enters the column at 1 atm with a molar percent vaporization equal to the distillate-to-feed ratio. Use the McCabe-Thiele method to compute:
 - (a) Minimum equilibrium stages, N_{min} using **Figure Q3 (a)** (7 marks)
 - (b) Minimum reflux ratio, R_{min} (8 marks)
 - (c) Number of equilibrium stages, N given that the reflux ratio, R = 1.4R_{min} using **Figure Q3 (b)** (8 marks)
 - (d) The optimum feed-stage location based on the answer in Q3 (c) (2 marks)

Q4	(a)	State t	te the use of each equation below:				
		(i)	Fenske equation (state one use only)				
		(ii)	Underwood equations				
		(iii)	Gilliland correlation				
		(iv)	Kirkbide equation	(8 marks)			
	(b)	pressi	outanizer as shown in Figure Q4 (b) is operated at a uniformate of 80 psia throughout the column. The distillate (top) to 3°F and its bottoms temperature is 340°F.	n operating emperature			
		(i)	Determine the two key components (i, j)	(2 marks)			
		(ii)	Tabulate the mole fraction for all components in distilla mole fraction for all components in bottoms (x_B)	te (x _D), and			
			mole fraction for an components in sections (1.2)	(4 marks)			
		(iii)	Calculate the relative volatility, α for component i and j, α_m usin equilibrium data in Table Q4 (b)				
			(note that $LK = i$ and $HK = j$)	(6 marks)			
		(iv)	Estimate the minimum theoretical stages, N _{min} by Fensk	(3 marks)			
		(v)	Determine the actual number of stages, N if its value is	2 times N _{min} (2 marks)			

- A simple batch pot is used to separate methanol (CH₃OH) from water using batch distillation method. The pot is initially filled with $W_0 = 50$ moles of an 80 mol% methanol at atmospheric pressure of 1 atm. The solution is then distilled to obtain the desired distilled concentration (x_D) of 89.15% of methanol. Using trial and error from **Figure Q5 (a) and Figure Q5 (b)**, estimate at which value of D_{Total} , W_{final} and $x_{W final}$ yield the value of $x_D \approx 89.15\%$ when:
 - (a) The first guessed value of $x_{W final} = 0.60$ (8 marks)
 - (b) The second guessed value of $x_{W final} = 0.65$ (8 marks)
 - (c) A tabulated data of vapor pressure, P^s for a vapor-liquid mixture of water (H_2O) and methane (CH_4) at P=2 atm and T=20 and $80^{\circ}C$ is as below:

T (°C)	P ^s for H ₂ O (atm)	P ^s for CH ₄ (atm)
20	0.02307	3.76×10^4
80	0.4673	6.82×10^4

- (i) Calculate the K-value and α for water over methane at 20°C (3 marks)
- (ii) Calculate the K-value and α for water over methane at 80°C (3 marks)
- (iii) Sketch a simple batch distillation (or Rayleigh distillation) (3 marks)

- Q6 (a) State four (4) points to compare an absorber with a stripper with the aid of suitable diagrams (10 marks)
 - (b) For a stream of liquid comprising of component A and B:
 - (i) Express the relative volatility of A to B, $\alpha_{A,B}$ in terms of P^s and P
 - (ii) Express the relative volatility of A to B, $\alpha_{A,B}$ in terms of γ , P^s and P
 - (iii) Given that K = 0.55, rearrange the K-value equation so that Y is in the left side of the equation
 - (iv) Given that K = 0.45, rearrange the K-value equation so that X is in the left side of the equation (12 marks)
 - (c) State three (3) parameters that can be determined from the McCabe-Thiele Method (3 marks)

- END OF QUESTION -

FINAL EXAMINATION

SEMESTER/SESSION : SEM III/2013/2014 COURSE NAME : SEPARATION PROCESS TECHNOLOGY PROGRAMME: 2 DAK COURSE CODE: DAK 21703

LIST OF FORMULA

 $E = K'_{DB}S/F_{A}$

 $\mathbf{K'}_{\mathrm{DB}} = \mathbf{Y}_{\mathrm{B}} / \mathbf{X}_{\mathrm{B}}$

 $1 - X_B^{(n)} / X_B^{(F)} = 1 - 1 / (1 + E/N)^n$

 $1 - X_B^{(R)} / X_B^{(F)} = 1 - 1 / (1 + E + E^N)$

 $1 - X_B^{(R)} / X_B^{(F)} = Y_1 (S - RF_A) / F_B$

 $Y_{N+1} = X_N (L'/V') + Y_1 - X_0 (L'/V')$

 $Y_{N+1} = \text{mol B in / mol gas (A)}$

 $Y_1 = \text{mol B out / mol gas (A)}$

 $X_N = \text{mol B out / mol liq solvent (C)}$

 $X_0 = \text{mol B in / mol liq solvent (C)}$

y = Y / (1 + Y)

 $z_{F}(F) = x_{D}(D) + x_{B}(B)$

F = D + B

q = 1 - (D/F)

Absorber's slope operating line = L' / V'

McCabe Thiele's slope rectifying operating line = (R / R + 1)

McCabe Thiele's slope rectifying operating line (min reflux) = $(R_{min} / R_{min} + 1)$

McCabe Thiele's slope q-line = (q / q - 1)

normal slope, $m = \Delta y / \Delta x$

 $\alpha_{m} = \left[(\alpha_{i,j})_{N} \times (\alpha_{i,j})_{1} \right]^{0.5}$

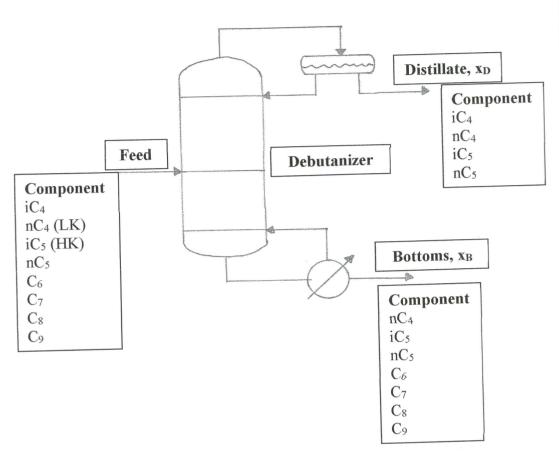
 $N_{min} = log \left[\left(x_{Di} / x_{Dj} \right) \left(x_{Bi} / x_{Bj} \right) \right] \div log \alpha_m$

$$\alpha_{i,j} = \frac{K_i}{K_j} \text{ or } \alpha_{A,B} = \frac{K_A}{K_B}$$

$$W_{final} = W_0 \exp\left(-\int_{x_0}^x \frac{dx}{y-x}\right) \text{ or } W_{final} = W_0 \exp(-Area \text{ under the curve})$$

$$D_{total} = W_0 - W_{final}$$

$$x_D = \frac{W_0 x_0 - W_{final} x_{W \; final}}{D_{total}}$$


$$K_n = \frac{y_n}{x_n} = \frac{Y_n/(1+Y_n)}{X_n/(1+X_n)}$$

$$K = \frac{P^s}{P}$$
 or $K = \frac{\gamma P^s}{P}$

FINAL EXAMINATION

SEMESTER/SESSION : SEM III/2013/2014 COURSE NAME : SEPARATION PROCESS TECHNOLOGY PROGRAMME : 2 DAK COURSE CODE : DAK 21703

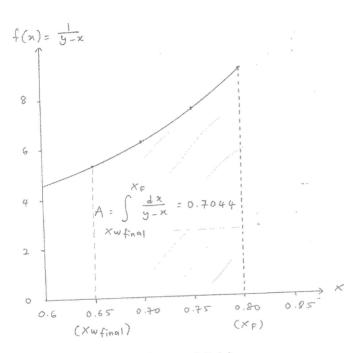

FIGURE Q4 (b)

TABLE Q4 (b)

TABLE V4 (D)						
Component	Distillate,D (lbmol/h)	Bottoms, B (lbmol/h)	K-value at 123°F (top, N)	K-value at 340°F (bottom, 1)		
iC ₄ nC ₄ (LK)	12 450	~0 6	1.04	5.21		
iC ₅ (HK)	13	23	0.496	3.61		
nC ₅	2	14				
C ₆	~0	23				
C ₇	~0	39				
C ₈	~0	272				
C ₉	~0	31				
	477	408				

FINAL EXAMINATION

SEMESTER/SESSION : SEM III/2013/2014 COURSE NAME : SEPARATION PROCESS TECHNOLOGY PROGRAMME : 2 DAK COURSE CODE : DAK 21703

FIGURE Q5 (a)

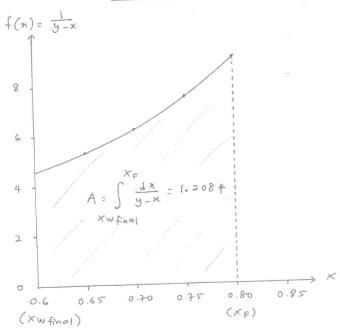


FIGURE Q5 (b)