

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION SEMESTER I **SESSION 2022/2023**

COURSE NAME

CIVIL ENGINEERING MATERIALS

COURSE CODE

BFC10502

PROGRAMME CODE :

BFF

EXAMINATION DATE : FEBRUARY 2023

DURATION

• 2 HOURS

INSTRUCTION

1. ANSWER ALL QUESTIONS

2.THIS FINAL EXAMINATION IS CONDUCTED VIA CLOSED BOOK.

TERBUKA

3.STUDENTS ARE **PROHIBITED** TO CONSULT THEIR OWN MATERIAL OR ANY EXTERNAL RESOURCES DURING THE EXAMINATION CONDUCTED VIA CLOSED

BOOK

THIS QUESTION PAPER CONSISTS OF EIGHT (8) PAGES

CONFIDENTIAL

iii)

iv)

crooking, cupping.

BFC10502

	_ ,					
Q1	As a civil engineer at a concrete batching plan, you are responsible to ensure that the production of concrete comply with the design.					
	(a)	Identify type and strength classes of cement for normal concrete mix design. (2 marks)				
	(b)	Sieve analysis for fine aggregate should be carried out to determine the percentage value for passing $600\mu m$ and gradation curve. Analyse the data from fine aggregate sieve analysis test in Table Q1(a) .				
		(8 marks)				
	(c)	Based on properties in Table Q1(b) , determine normal concrete mix design for Grade 30. Use Figure Q1(a) - Q1(f) to complete the design form in Figure Q1(g) . (20 marks)				
Q2	(a)	Discuss the significant of water absorption in masonry production. (5 marks)				
	(b)	Briefly describe FIVE (5) different types of bricks and their application in construction.				
		(10 marks)				
	(c)	List and sketch FIVE (5) types of bonds in brick masonry wall construction. (10 marks)				
Q3	(a)	Briefly explain the definition of alloy steel. (2 marks)				
	(b)	Identify THREE (3) different alloying agents and describe their effects. (9 marks)				
	(c)	Two samples of timber were tested for specific gravity (SG), the results show that sample A has SG=0.5 and sample B has SG=0.7. Justify which sample that suitable as a structural member for your construction project.				
	(d)	Illustrate types of timber defects: (6 marks)				
		i) knotholes,ii) split and checks,				

TERBUKA (8 marks)

CONFIDENTIAL

BFC10502

Q4 (a) Differentiate between bitumen and tar.

(4 marks)

(b) List and describe TWO (2) techniques for achieving self-healing in concrete.

(4 marks)

(c) Describe corrosion factor of aluminium and suggest the prevention method.

(6 marks)

(d) Name **THREE** (3) different categories of glasses and briefly describe their properties.

(6 marks)

- END OF QUESTIONS -

TERBUKA

CONFIDENTIAL

BFC10502

FINAL EXAMINATION

SEMESTER/ SESSION: SEM I 2022/2023

COURSE NAME: CIVIL ENGINEERING MATERIALS

PROGRAMME: BFF COURSE CODE: BFC10502

Table Q1(a)

Sieve size (mm)	Sieve mass (g)	Sieve mass + fine aggregated retained (g)
5	450	450
2.36	368	398
1.18	362	404
0.6	345	385
0.3	316	364
0.15	314	348
Pan	362	368

Table Q1(b)

Characteristic strength of concrete	30 N/mm ² at 28 days		
Proportion of defectives	2.5% (k=1.96)		
Standard deviation	8 N/mm ²		
Type of fine aggregate	Sources from river quarry Sources from rock quarry		
Type of coarse aggregate			
Maximum aggregate size	20 mm		
Slump value	0 - 10 mm		

TERBUKA

SEMESTER/ SESSION: SEM I 2022/2023 COURSE NAME: CIVIL ENGINEERING MATERIALS

PROGRAMME: BFF

Figure Q1(a)

Figure Q1(b)

FINAL EXAMINATION

SEMESTER/ SESSION: SEM I 2022/2023

COURSE NAME: CIVIL ENGINEERING MATERIALS

PROGRAMME: BFF

COURSE CODE: BFC10502

Cement	Type of	Com	pressive	strengt	ths (N/mm
strength	coarse		Age (days)	
class	aggregate	3	7	28	91
42.5	Uncrushed	22	30	42	49
	Crushed	27	36	49	56
52.5	Uncrushed	29	37	48	54
	Crushed	34	43	55	61

Throughout this publication concrete strength is expressed in the units N/mm $^{\prime}$ 1 N/mm $^{\prime}$ = 1 MN/m $^{\prime}$

Figure Q1(c)

Slump (mm)		0-10	10-30	30-60	60-180
Vebe time (s)		>12	6-12	3-6	0-3
Maximum size					
of aggregate	Type of				
(mm)	aggregate				
10	Uncrushed	150	180	205	225
	Crushed	180	205	230	250
20	Uncrushed	135	160	180	195
	Crushed	170	190	210	225
40	Uncrushed	115	140	160	175
	Crushed	155	175	190	205

Figure Q1(d)

Figure Q1(e)

FINAL EXAMINATION

SEMESTER/ SESSION: SEM I 2022/2023

COURSE NAME: CIVIL ENGINEERING MATERIALS

PROGRAMME: BFF

COURSE CODE: BFC10502

Free-water/cement ratio

Figure Q1(f)

TERBUKA

FINAL EXAMINATION

SEMESTER/ SESSION: SEM I 2022/2023 COURSE NAME: CIVIL ENGINEERING MATERIALS

PROGRAMME: BFF COURSE CODE: BFC10502

Stage	Iten	1	Reference or calculation	Values				
1	1.1	Characteristic strength	Specified	1		N/mm ² at		days
				Proportion def	ective			
	1.2	Standard devation	Fig 3	A14 - 114 P		N/mm ² or no data		N/mm²
	1.3	Margin	C1	(A =		×		
			or Specified					N/mm²
	1.4	Target mean strength	C2				******	N/mm²
	1.5	Cement strength class	Specified	42.5/52.5				
	1.6	Aggregate type: coarse Aggregate type: fine		Crushed/uncru Crushed/uncru				
	1.7	Free water/coment ratio	Table 2, Fig 4			-1	_	
	18	Maximum free-water/ cement ratio	Specified	ent conference of		Use the lower va	ue	
2	21	Slump or Vebe time	Specified	Stump	(1) + (+) - (+) - (+) - (+) - (+)	. mm or Vebe time		one care 5
	2.2	Maximum aggregate size	Specified				Line total	em
	2.3	Free-water content	Table 3					kg/m²
3	31	Cement content	C3					kg/m²
	3.2	Maximum coment content	Specified		kg/m²			
	3.3	Minimum cement content	Specified		_ kg/m ³			
				use 3.1 f ≤ 3.2 use 3.3 f > 3.1				kg/m ³
	3.4	Modified free-water/cement ro	abo				T	
4	41	Relative density of aggregate (SSD)				known/assumed	-	
	4.2	Concrete density	Fig 5					kg/m ²
	4.3	Total aggregate content	C4	*** *** ***				kg/m ³
5	5.1	Grading of fine aggregate	Percentage passin	g 600 µm sieve	11-1-1-1-1-1-1-1	***		N
	5.2	Proportion of fine aggregate	Fig &	400000000000				%
	5.3	Fine aggregate content	C5		X		-	kg/m ⁴
	5.4	Coarse aggregate content		(4.000-0-0-0-0-0	and the same			kg/m³
	Quan	tities	Cement (kg)	Water (kg or litres)	Fine aggregate [kg]	Coarse aggreg 10 mm 20	ate (kg) mm	40 mm
	per m	³ (to nearest 5 kg)			100 V 100 L 1			
	per tr	al may of						