

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION SEMESTER I SESSION 2022/2023

COURSE NAME

MECHANICS OF MATERIAL

COURSE CODE

BFC 20903

PROGRAMME CODE

BFF

EXAMINATION DATE :

FEBRUARY 2023

DURATION

3 HOURS

INSTRUCTION

1. ANSWER ALL QUESTIONS

2. THIS FINAL EXAMINATION IS CONDUCTED VIA CLOSED

BOOK.

3. STUDENTS ARE **PROHIBITED**TO CONSULT THEIR OWN
MATERIAL OR ANY EXTERNAL
RESOURCES DURING THE
EXAMINATION CONDUCTED
VIA CLOSED BOOK.

THIS QUESTION PAPER CONSISTS OF FIVE (5) PAGES

CONFIDENTIAL

BFC20903

Q1	fractur	by specimen having a diameter of 12.8 mm and a gauge length of 50 mm was to be. Load and deformation data obtained during the test are given in Table ing appropriate graph, determine the following;	ested to
	(a)	the modulus of elasticity.	
	(b)	the proportional limit.	marks)
	(c)	the ultimate strength. (4	marks)
	(d)	the yield strength (0.05% offset).	marks)
	(e)	the yield strength (0.20% offset).	marks)
	(f)	the fracture stress.	marks)
	(g)	the true fracture stress if the final diameter of the specimen at the location fracture was 11.3 mm.	marks) of the
		(4	marks)
Q2	dimens	If T shape is used to support the loads shown on the beam in Figure Q2(a sions of the shape shown in Figure Q2(b) where $d = 450$ mm, $b_f = 300$ mm, $t_f = 200$ mm.	a). The 25 mm,
	(a)	Draw shear force diagram (SFD) and bending moment diagram (BMD).	
		(10	marks)
	(b)	Calculate the moment of inertia about z-axis. (5)	marks)
	(c)	Draw the bending stress profile from the cross-section. (5 s	marks)
	(d)	Determine the maximum transverse shear stress profile from the cross-section (5 i	ı. marks)

The property of the second sec

CONFIDENTIAL

BFC20903

- Q3 The simply supported beam shown in Figure Q3 consists of a W530 \times 92 structural steel wide-flange shape $[E = 200 \text{ GPa}, I = 554 \times 10^6 \text{ mm}^4]$.
 - (a) Determine the support reactions at support A and C

(5 marks)

(b) Compute the slope of the beam at A using the Macaulay's method.

(10 marks)

(c) Compute the deflection of the beam at B using the Macaulay's method.

(10 marks)

- A steel tube with Modulus Young, E = 200 GPa and yield strength, $\sigma_y = 250$ MPa has a length of L = 1,400 mm supports an eccentrically applied load P as shown in **Figure Q4**. The tube has an outside diameter of 60 mm and a wall thickness of 5 mm. If the eccentricity, e = 9 mm, determine;
 - (a) Determine the maximum load P which can be applied without causing either buckling or yielding of the tube.

(5 marks)

- (b) Calculate the corresponding maximum deflection midway between A and B. (10 marks)
- (c) State five (5) ways to improve the torsional rigidity in a tube cross-section. Provide your sketch where appropriate.

(10 marks)

- END OF QUESTIONS -

TERBUKA

of fine time made to the representation of the second of the second of

FINAL EXAMINATION

SEMESTER/SESSION : SEM I 2022/2023 COURSE NAME

: MECHANICS OF MATERIAL

PROGRAMME CODE: BFF

COURSE CODE : BFC20903

Load	Change in Length (mm)	Load (kN)	Change in Length (mm)
(kN)			
0	0		
7.6	0.02	43.8	1.50
14.9	0.04	45.8	2.00
22.2	0.06	48.3	3.00
28.5	0.08	49.7	4.00
29.9	0.10	50.4	5.00
30.6	0.12	50.7	6.00
32.0	0.16	50.4	7.00
33.0	0.20	50.0	8.00
33.3	0.24	49.7	9.00
36.8	0.50	47.9	10.00
41.0	1.00	45.1	fracture

TABLE Q1

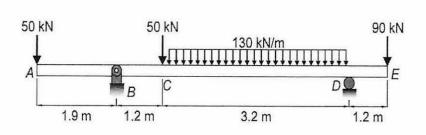


FIGURE Q2 (a)

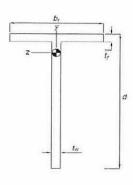


FIGURE Q2 (b)

FINAL EXAMINATION

SEMESTER/SESSION : SEM I 2022/2023

COURSE NAME

: MECHANICS OF MATERIAL

PROGRAMME CODE: BFF

COURSE CODE : BFC20903

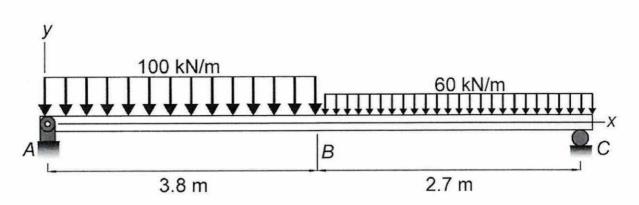
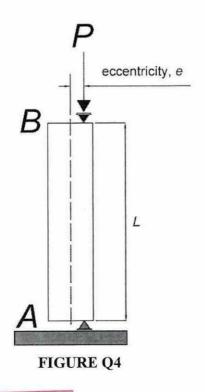



FIGURE Q3

TERBUKA