

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION SEMESTER I SESSION 2022/2023

COURSE NAME

: NUMERICAL METHODS

COURSE CODE

: BFC25203

PROGRAMME CODE

: BFF

EXAMINATION DATE

: FEBRUARY 2023

DURATION

: 3 HOURS

INSTRUCTION

- 1. ANSWER ALL QUESTIONS.
- 2. THIS FINAL EXAMINATION IS CONDUCTED VIA CLOSED BOOK.
- 3. STUDENTS ARE PROHIBITED
 TO CONSULT THEIR OWN
 MATERIAL OR ANY EXTERNAL
 RESOURCES DURING THE
 EXAMINATION CONDUCTED

VIA CLOSED BOOK.

TERBUKA

THIS QUESTION PAPER CONSISTS OF SIX (6) PAGES

CONFIDENTIAL

BFC25203

- Q1 (a) Table Q1 (a) shows the settlement of Batu Pahat municipal solid waste landfills over 5-years period.
 - (i) Develop the natural cubic spline by using data given in the table.

(14 marks)

(ii) Based on $\mathbf{Q1(a)(i)}$ verify that $f_2(3)$ and $f_3(3) = 19$.

(1 mark)

- (b) The experimental result for a cantilever beam's deflection response to the exposure to a 10 kN/m load are shown in **Table Q1** (b). Given the slope of the beam is $\theta = d'(x)$ and the bending moment of the beam is $M = \theta'(x)$
 - (i) By using 3-point central, 3-point forward and 5-point central formulas, approximate the values of the slope of the beam at 3.0 m length. Do all calculation in 4 decimal places.

(3 marks)

(ii) Based on Q1(b)(i), identify the method that could be capable of generating the most accurate approximation and provide a justification to support your answer. Given the exact solution of the slope of beam the is $0.0625 x^3 - 1.125x^2 + 6.73 x$.

(5 marks)

(iii) Evaluate **two (2)** approximate values of bending moment of the beam at the deflection of 34 mm. Do all calculation in 4 decimal places.

(2 marks)

Q2 (a) Approximate $\int_0^3 2 + \sin(2\sqrt{x})dx$ by using an appropriate Simpson's rule with n = 9 and state your reason. Do all calculations in 3 decimal places.

(10 marks)

- (b) Given $\int_{1}^{3} \frac{2t^{2}}{6+6t^{4}} dt = \int_{-1}^{1} \frac{(x+2)^{2}}{3+3(x+2)^{4}} dx$
 - (i) By taking $t = \frac{(b-a)x+(b+a)}{2}$, show that the two integrals above are equivalent.

(5 marks)

TERBUKA

CONFIDENTIAL

BFC25203

(ii) Then, find the value of $\int_{1}^{3} \frac{2t^{2}}{6+6t^{4}} dt$ by using the 2-point and 3-point Gauss Quadrature formula. Find the absolute error for each point if the exact solution is the answer base on calculator. Do all calculations in 3 decimal places.

(10 marks)

Q3 The stability of the bridge construction can be calculated and determined by the natural frequency of a bridge system (smallest magnitude eigenvalue) and its corresponding eigenvector in the matrix form as:

$$C = \begin{bmatrix} 5 & -2 & 1 \\ -2 & 2 & 0 \\ 2 & -2 & 3 \end{bmatrix}$$

(a) Use $v^{(0)} = (1 \ 0 \ 1)$ and stop the iteration until $|m_{k+1} - m_k| < 0.005$. Do all calculations in 3 decimal places.

(25 marks)

- Q4 (a) Fourth order Runge-Kutta (4th-RK) method:
 - (i) Solving a first Ordinary Differential Equation (ODE) using the RK4. $\frac{dy}{dx} = 1.2x + 7e^{-0.3x}$

$$\frac{dy}{dx} = -1.2y + 7e^{-0.3x}$$

from x = 0 to x = 2.5 with the initial condition y = 3 at x = 0. Using h = 0.5.

(6 marks)

(ii) Sketch the RK4 results with the exact (analytical) solution:

$$y = \frac{70}{9}e^{-0.3x} - \frac{43}{9}e^{-1.2x}$$

Using h = 0.05.

(9 marks)

(b) Consider a steel rod AB of 4 meters long, with taking $\Delta x = h = 1$, is subjected to a temperature of 0°C at the point A (left end) and is maintained at 10°C at the point B (right end) until a steady state of temperature along the bar is achieved. At t= 0s, however the end of point B is suddenly reduced to 0°C while the other points are kept at the same temperature. By taking $k = \Delta t = 0.2s$ until t = 0.4s only, use the implicit method to solve the heat equation:

$$\frac{\partial u}{\partial t} = \frac{\partial u^2}{\partial x^2}$$

(10 marks)

-END OF QUESTIONS-

TERBUKA

FINAL EXAMINATION

SEMESTER / SESSION: SEM I / 2022/2023 COURSE NAME: NUMERICAL METHODS PROGRAMME CODE: BFF COURSE CODE: BFC 25203

Table Q1(a)

Year	1	2	3	5
Soil settlement (cm)	3	6	19	99

Table Q1(b)

Table Q1(b)			
Beam's length, x (m)	Beam's deflection, d (mm)		
0.5	0.7979		
1.0	3.0156 6.4072		
1.5			
2.0	10.7500		
2.5	15.8447		
3.0	21.5156 27.6100 34.0000		
3.5			
4.0			
4.5	40.5791		
5.0	47.2656		
5.5	54.0001		
6.0	60.7500		

Formulae

Nonlinear equations

Lagrange Interpolating:
$$L_i = \frac{(x-x_1)(x-x_2)}{(x_i-x_1)(x_i-x_2)} ... \frac{(x-x_n)}{(x_i-x_n)}; f(x) = \sum_{i=1}^n L_i(x) f(x_i)$$

Newton-Raphson Method :
$$x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)}$$
, $i = 0,1,2 \dots$

System of linear equations

Gauss-Seidel Iteration:

$$x_i^{(k+1)} = \frac{b_i - \sum_{j=1}^{i-1} a_{ij} \ x_j^{(k+1)} - \sum_{j=i+1}^{n} a_{ij} \ x_j^{(k)}}{a_{ii}}, \forall i = 1, 2, 3, \dots, n.$$

Interpolation

Natural Cubic Spline:

FINAL EXAMINATION

SEMESTER / SESSION: SEM I / 2022/2023 COURSE NAME: NUMERICAL METHODS

PROGRAMME CODE: BFF COURSE CODE: BFC 25203

$$b_k = 6(d_{k+1} - d_k), k = 0,1,2,3,...,n-2,$$

When;
$$m_0 = 0, m_n = 0,$$

$$h_k m_k + 2(h_k + h_{k+1}) m_{k+1} + h_{k+1} m_{k+2} = b_k, k = 0,1,2,3,...,n-2$$

$$\begin{split} S_k(x) &= \frac{m_k}{6h_k} (x_{k+1} - x)^3 + \frac{m_{k+1}}{6h_k} (x - x_k)^3 + \left(\frac{f_k}{h_k} - \frac{m_k}{6} h_k\right) (x_{k+1} - x) \\ &+ \left(\frac{f_{k+1}}{h_k} - \frac{m_{k+1}}{6} h_k\right) (x - x_k) \quad , \ k = 0, 1, 2, 3, \dots n - 1 \end{split}$$

Numerical Differentiation

2-point forward difference:
$$f'(x) \approx \frac{f(x+h)-f(x)}{f(x)}$$

2-point backward difference:
$$f'(x) \approx \frac{f(x) - f(x - h)}{h}$$

3-point central difference:
$$f'(x) \approx \frac{f(x+h) - f(x-h)}{f(x-h)}$$

3-point central difference:
$$f'(x) \approx \frac{f(x+h)-f(x-h)}{2h}$$

3-point forward difference: $f'(x) \approx \frac{-f(x+2h)+4f(x+h)-3f(x)}{2h}$

3-point backward difference:
$$f'(x) \approx \frac{3f(x)-4f(x-h)+f(x-2h)}{3f(x)-4f(x-h)+f(x-2h)}$$

3-point backward difference:
$$f'(x) \approx \frac{3f(x)-4f(x-h)+f(x-2h)}{2h}$$

5-point difference formula: $f'(x) \approx \frac{-f(x+2h)+8f(x+h)-8f(x-h)+f(x-2h)}{12h}$

3-point central difference:
$$f''(x) \approx \frac{f(x+h)-2f(x)+f(x-h)}{1-x^2}$$

3-point central difference:
$$f''(x) \approx \frac{f(x+h)-2f(x)+f(x-h)}{h^2}$$

5-point difference formula: $f''(x) \approx \frac{-f(x+2h)+16f(x+h)-30f(x)+16f(x-h)-f(x-2h)}{12h^2}$

Numerical Integration

Simpson
$$\frac{1}{3}$$
 Rule : $\int_a^b f(x)dx \approx \frac{h}{3} \left[f_0 + f_n + 4 \sum_{\substack{i=1 \ i \text{ odd}}}^{n-1} f_i + 2 \sum_{\substack{i=2 \ i \text{ even}}}^{n-2} f_i \right]$

Simpson
$$\frac{3}{8}$$
 Rule: $\int_a^b f(x)dx \approx \frac{3}{8}h\left[(f_0 + f_n) + 3(f_1 + f_2 + f_4 + f_5 + \dots + f_n)\right]$

$$f_{n-2} + f_{n-1}$$
) + 2($f_3 + f_6 + \dots + f_{n-3}$]
2-point Gauss Quadrature: $\int_a^b g(x)dx = \left[g\left(-\frac{1}{\sqrt{3}}\right) + g\left(\frac{1}{\sqrt{3}}\right)\right]$

3-point Gauss Quadrature:
$$\int_a^b g(x)dx = \left[\frac{5}{9}g\left(-\sqrt{\frac{3}{5}}\right) + \frac{8}{9}g(0) + \frac{5}{9}g\left(\sqrt{\frac{3}{5}}\right)\right]$$

Eigen Value

Power Method:
$$v^{(k+1)} = \frac{1}{m_{k+1}} A v^{(k)}, k = 0,1,2 \dots$$

Shifted Power Method:
$$v^{(k+1)} = \frac{1}{m_{k+1}} A_{shifted} v^{(k)}, k = 0,1,2...$$

Ordinary Differential Equation

Fourth-order Runge-Kutta Method :
$$y_{i+1} = y_i + \frac{1}{6}(k_1 + 2k_2 + 2k_3 + k_4)$$

FINAL EXAMINATION

SEMESTER / SESSION: SEM I / 2022/2023 COURSE NAME: NUMERICAL METHODS PROGRAMME CODE: BFF COURSE CODE: BFC 25203

where
$$k_1 = hf(x_i, y_i)$$
 $k_2 = hf(x_i + \frac{h}{2}, y_i + \frac{k_1}{2})$
 $k_3 = hf(x_i + \frac{h}{2}, y_i + \frac{k_2}{2})$ $k_4 = hf(x_i + h, y_i + k_3)$

Partial Differential Equation

Heat Equation: Finite Difference Method

$$\left(\frac{\partial u}{\partial t}\right)_{i,j} = \left(c^2 \frac{\partial^2 u}{\partial x^2}\right)_{i,j} \quad \frac{u_{i,j+1} - u_{i,j}}{k} = c^2 \frac{u_{i-1,j} - 2u_{i,j} + u_{i+1,j}}{h^2}$$

Heat Equation: Crank-Nicolson Implicit Finite-Difference Method

$$\left(\frac{\partial u}{\partial t}\right)_{i,j+\frac{1}{2}} = \left(c^2 \frac{\partial^2 u}{\partial x^2}\right)_{i,j+\frac{1}{2}}$$

$$\frac{u_{i,j+1} - u_{i,j}}{k} = \frac{c^2}{2} \left(\frac{u_{i-1,j+1} - 2u_{i,j+1} + u_{i+1,j+1}}{h^2} + \frac{u_{i-1,j} - 2u_{i,j} + u_{i+1,j}}{h^2}\right)$$

Poisson Equation: Finite Difference Method

$$\left(\frac{\partial^2 u}{\partial x^2}\right)_{i,j} + \left(\frac{\partial^2 u}{\partial y^2}\right)_{i,j} = f_{i,j} \quad \frac{u_{i+1,j} - 2u_{i,j} + u_{i-1,j}}{h^2} + \frac{u_{i,j+1} - 2u_{i,j} + u_{i,j-1}}{k^2}$$

Wave Equation: Finite Difference Method

$$\left(\frac{\partial^2 u}{\partial t^2}\right)_{i,j} = \left(c^2 \frac{\partial^2 u}{\partial x^2}\right)_{i,j} \quad \frac{u_{i,j-1} - 2u_{i,j} + u_{i,j+1}}{k^2} = c^2 \frac{u_{i-1,j} - 2u_{i,j} + u_{i+1,j}}{h^2}$$

TERBUKA