

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION SEMESTER I SESSION 2022/2023

8

.

COURSE NAME

STATIC AND DYNAMIC

COURSE CODE

BFC10103

PROGRAMME CODE

BFF

EXAMINATION DATE

FEBRUARY 2023

DURATION

3 HOURS

INSTRUCTION

1. ANSWER ALL QUESTIONS

2. THIS FINAL EXAMINATION IS CONDUCTED VIA CLOSED BOOK

3. STUDENTS ARE **PROHIBITED** TO CONSULT THEIR OWN MATERIAL OR ANY EXTERNAL RESOURCES DURING THE EXAMINATION CONDUCTED VIA CLOSED BOOK

CONDUCTED VIA CLOSED BOX

THIS QUESTION PAPER CONSISTS OF FOUR (4) PAGES

CONFIDENTIAL

Description of grant will be a first state of the control of the c

BFC10103

Q1 (a) FIGURE Q1(a) shows three uniform distributed loads of 4kN/m, 6kN/m and 4kN/m are applied to the beam. Sketch free body diagram (FBD) of the beam and calculate the support reactions at A and B.

(8 marks)

(b) Briefly explain the difference between the kinetic and static friction? State the highest friction and the factors that increase friction.

(5 marks)

- (c) As shown in **FIGURE Q1(b)**, horizontal force of P is applied on a crate with a mass of 50kg. The coefficient of static friction between the crate and the plane is 0.25. Determine the minimum force P required to hold the crate from sliding down the plane.

 (12 marks)
- Q2 (a) Elaborate the procedure in determining the centroid for the compound shape in two dimensional. (5 marks)
 - (b) **FIGURE Q2(a)(i)** and **Q2(a)(ii)** show beams with T-section and different reference axis of x and y. Prove the position of centroid (\bar{x}, \bar{y}) is located at the same position. (5 marks)
 - (c) You have been assigned as design engineer in Berjaya Consultant Sdn. Bhd. The first task you need to approximate the centroid (\bar{x}, \bar{y}) of prestressed concrete section as is shown in **FIGURE Q2(b)**. Given h = 672.67mm. All dimensions in unit of mm. (15 marks)
- Q3 (a) Discuss **TWO** (2) importance of moment of inertia to design the structural elements. (10 marks)
 - (b) Determine the moment of inertia about the centroidal axis x and y in **FIGURE Q2(b)**. (15 marks)
- Q4 (a) As shown in **FIGURE Q4**, a train is traveling along a straight track with 2 m/s. It starts to accelerate at 60/v⁴ m/s². Determine the velocity (v) and the position 3 seconds after the acceleration.

(12 marks)

(b) Briefly explain the relationship between gravitational potential energy (GPE) and kinetic energy (KE).

(6 marks)

(c) Assume that a 10kg weight was kept at a height of 20 meters above the ground. Now, this block is dropped. Find the velocity of the block just before it hits the ground.

(7 marks)

- END OF QUESTIONS -

TERBUKA

CONFIDENTIAL

DA SEYED JAMES AS DIN SEJEST PAT ON SEJEST PAT ON SAME AS DIN SEJEST PAT ON SEJEST PAT

FINAL EXAMINATION

SEMESTER/SESSION : SEM1-2022/2023

COURSE NAME

: STATIC AND DYNAMIC

PROGRAMME CODE: BFF

COURSE CODE : BFC10103

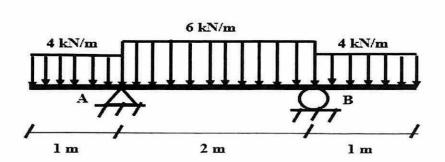


FIGURE Q1(a)

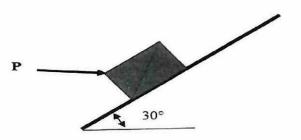


FIGURE Q1(b)

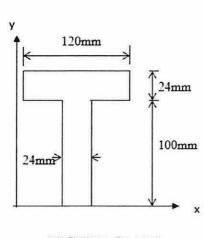


FIGURE Q2(a)(i)

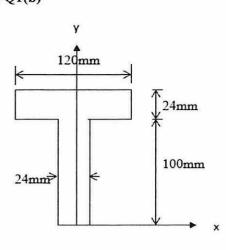


FIGURE Q2(a)(ii)

TERBUKA

CONFIDENTIAL

WHER CONTRIBUTE IN THE PROPERTY OF netwith an of Cost Engineering Burl Econ Seath at Cost E spreeding and Burl Econ Street Wasterna

FINAL EXAMINATION SEMESTER/SESSION : SEM1-2022/2023 PROGRAMME CODE: BFF NAMA KURSUS : STATIC AND DYNAMIC COURSE CODE : BFC10103 350 80 80 h Datum y 140 80 → Datum x 700 FIGURE Q2(b) V - X -000000000 FIGURE Q4 TERBUKA

CONFIDENTIAL