

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION SEMESTER I **SESSION 2022/2023**

COURSE NAME

STATIC AND DYNAMIC

COURSE CODE

: DAC 11803

PROGRAMME CODE :

DAA

:

EXAMINATION DATE :

FEBRUARY 2023

DURATION

2 HOURS 30 MINUTES

INSTRUCTION

1. ANSWER ALL QUESTIONS

2. THIS FINAL EXAMINATION IS CONDUCTED VIA CLOSED

BOOK.

3. STUDENTS ARE **PROHIBITED**

TO CONSULT THEIR OWN

MATERIAL

OR

ANY

EXTERNAL

RESOURCES

DURING THE EXAMINATION CONDUCTED VIA CLOSED

BOOK

THIS QUESTION PAPER CONSISTS OF NINE (9) PAGES

CONFIDENTIAL

DAC 11803

- Q1 (a) Vector is physical quantities that requires both magnitude and direction whereas scalar only has magnitude. Based on this statement, determine whether the following is a Vector or Scalar.
 - (i) Mass
 - (ii) Force
 - (iii) Moment
 - (iv) Time

[4 marks]

(b) A 6.5 lbs sack of bean is hang as shown in **Figure Q1(b)**. In order to keep the system in equilibrium, determine the following; $[1kg = 2.205 \ lbs]$

Figure Q1(b)

(i) Break down the free body diagram for point A, B and C.

[6 marks]

(ii) The force in each rope.

[10 marks]

(iii) If the length of rope EB is 2.5m, determine its length if it is transformed to x-axis.

[2 marks]

2

CONFIDENTIAL

TERBUKA

(c) By referring to Figure Q1(c), a cantilever beam is subjected to three force couple. Determine;

Figure Q1(c)

(i) The resultant couple moment acting on point A.

[1.5 marks]

(ii) The total moment acting on point B.

[1.5 marks]

Q2 (a) Figure Q2(a) shows a steel rod is bend to form a mounting bracket.

Figure Q2(a)

(i) Draw the free body diagram for the rigid body.

[4 marks]

(ii) Write force equations of equilibrium for the rigid body.

[4 marks]

(iii) Determine the reactions at A and B.

[4 marks]

DAC 11803

(b) Figure Q2(b) shows a support block (12kg) is acted upon by two forces. Knowing that the coefficients of friction between the block and the incline are $\mu_s = 0.22$.

Figure Q2(b)

(i) Draw the free body diagram of the system complete with magnitudes and direction of forces.

[5 marks]

(ii) Write all relevant equations of equilibrium for the system.

[4 marks]

(iii) Calculate the force P for which motion of the block up the incline is impending.

[4 marks]

DAC 11803

Q3 (a) Differentiate center of gravity and centroid of a body.

[4 marks]

(b) Determine the centroid of shaded area shown in the Figure Q3(b).

Figure Q3(b)

[13 marks]

(c) Locate the centroid \bar{y} of the plate area shown in Figure Q3(c).

DAC 11803

Q4 (a) Briefly explain terminology of Displacement and then list the differences between Displacement and Distance.

[3 marks]

(b) Figure Q4(b) shows a shaded composite area. Based on this figure, calculate the moment of inertia of the area about the x-axis.

Figure Q4(b)

[7 marks]

- (c) A stone is thrown upwards from the horizontal ground with a speed of 14.7 m/s. Assuming that there is no air resistance and taking $g = 9.8 \text{ ms}^{-2}$.
 - (i) Determine the time taken for the stone to reach the ground again.[5 marks]
 - (ii) Determine the maximum height the stone can reached.

[4 marks]

(d) A man pulls a 50kg box as shown in **Figure Q4(d)**. He needs a force 3 times the weight of the box to keep the box moving.

Figure Q4(d)

(i) Determine the force needed for the man to move the box.

[3 marks]

(ii) Calculate the work been done if the box was moved in 4m.

[3 marks]

-END OF QUESTIONS-

DAC 11803

FINAL EXAMINATION

SEMESTER / SESSION : SEM I 2022/2023 .

COURSE NAME : STATIC AND DYNAMIC PROGRAMME CODE: DAA

COURSE CODE: DAC 11803

$$\sum F_x = 0$$
 ; $\sum F_y = 0$; $\sum F_z = 0$; $\sum M = 0$ $M = F \cdot d$

$$I_x = \overline{I}_x + Ad_y^2$$

$$J_o = \overline{J}_c + Ad$$

$$k_x = \sqrt{\frac{I_x}{A}}$$

$$F_{*} = \mu_{*}N$$

$$\begin{split} I_{x} &= \overline{I}_{x} + Ad_{y}^{2} & F_{s} = \mu_{s}N & I_{xx}Circle = \frac{\pi r^{4}}{4} \\ I_{y} &= \overline{I}_{y} + Ad_{x}^{2} & \sum_{i=1}^{n} \widetilde{x}A & \sum_{i=1}^{n} \widetilde{y}A & I_{xx}Triangle = \frac{bh^{3}}{36} \\ k_{x} &= \sqrt{\frac{I_{x}}{A}} & \sum_{i=1}^{n} A & I_{xx}Rectangular = \frac{bh^{3}}{12} \end{split}$$

$$I_{xx}Circle = \frac{\pi r^4}{4}$$

$$I_{xx}Triangle = \frac{bh^3}{36}$$

$$I_{xx}Rectangular = \frac{bh^3}{12}$$

2D Centroid

Shape	\widetilde{x}	\widetilde{y}	Area
Quarter semicircular			
\overline{x}	$\frac{4r}{3\pi}$	$\frac{4r}{3\pi}$	$\frac{\pi \cdot r^2}{4}$
Semi-circular			
To To	0	$\frac{4r}{3\pi}$	$\frac{\pi \cdot r^2}{2}$

5 "V5.