

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION SEMESTER I **SESSION 2022/2023**

COURSE NAME

: ELECTRICAL TECHNOLOGY

COURSE CODE

: DAE 11003

PROGRAMME CODE : DAE

EXAMINATION DATE : FEBRUARY 2023

DURATION

: 3 HOURS

INSTRUCTION

: 1. ANSWER **FOUR (4)** QUESTIONS **ONLY FROM FIVE (5) QUESTIONS**

PROVIDED.

2. THIS FINAL EXAMINATION IS CONDUCTED VIA CLOSE BOOK.

3. STUDENTS ARE **PROHIBITED** TO CONSULT THEIR OWN MATERIAL OR ANY EXTERNAL RESOURCES DURING THE EXAMINATION

CONDUCTED VIA CLOSED BOOK.

THIS QUESTION PAPER CONSISTS OF NINE (9) PAGES

TERBUKA

CONFIDENTIAL

Q1	(a)	Describe the following electrical terminology and indicate the numbers of valence electron each.			
		(i) (ii) (iii)	Conductor Semiconductor Insulator	(2 Marks) (2 Marks) (2 Marks)	
	(b)	Determine the resistance and tolerance color code for the following 4-band resistors:			
		(i) (ii)	$20 \text{ k}\Omega$ with 5% tolerance. 130 M Ω with 10% tolerance.	(3 Marks) (3 Marks)	
	(c)	Referring to Figure Q1 (c), it shown a graph of current versus voltage for three (3) resistance values. Calculate value of:			
		(i) (ii) (iii)	R_1 R_2 R_3	(2 Marks) (2 Marks) (2 Marks)	
	(d)	Referring to Figure Q1 (d), draw the placement of meters to measure:			
		(i) (ii)	Voltage (V) across R ₂ Current (I) flow at R ₄	(2 marks) (2 marks)	
	(e)	Given a battery rated at 100 Ah. Find how many hours it can delivered to the 14 A loads.			
		the 14	A loads.	(3 Marks)	
Q2	(a)	Express Kirchhoff's Current Law (KCL) equivalence for treferring to Figure Q2 (a).		the circuit	
				(3 Marks)	
	(b)	Five (5) resistors in series with 20 V source. The voltage drops across four of the resistors are 1.5 Volt, 5.5 Volt, 3 Volt, and 6 Volt.			
		(i) (ii)	Calculate the voltage dropped across fifth resistor. Draw the equivalent circuit consist of parts given.	(3 marks) (5 marks)	

TERBUKA

	(c)	Referring to Figure Q2 (c) , determine the current mea Ammeter if the switch position at:	sured by the		
		(i) Point B (ii) Point C	(4 marks) (4 marks)		
	(d)	Referring to Figure Q2 (d), determine the values of:			
		(i) V _S (ii) R ₂	(2 marks) (4 marks)		
Q3	(a)	Illustrate and draw the following series-parallel circuit: A series combination of three parallel circuits, each coresistors. The source voltage is 25 Volt DC.			
			(6 Marks)		
	(b)	Referring to Figure Q3 (b), determine the output voltage $\times 100 \text{ k}\Omega$ load connected between point A and B.			
			(8 Marks)		
	(c)	Referring to Figure Q3 (c) , calculate the total resistance (R source.	(T) across the		
			(11 Marks)		
Q4	(a)	Define 'reluctance' in electromagnetic properties with aid of a definitive formula and its definition.			
			(3 Marks)		
	(b)	Referring to Figure Q4 (b), show the magnetic field lines wh	en two likely		
		poles bar magnets are place near each other.	(4 Marks)		
	(c)	In a certain magnetic field, the cross-sectional area is 830 cm ² and the			
		is 3152 μ W. Determine the flux density. (4 Marks)			
	(d)	(i) Define 'peak value' of a sine wave.	(2 Marks)		
		(ii) With the aid of diagram, illustrate the positive and negati	ve peak		
		voltage in one cycle.	(2 Marks)		
			()		

(e) Referring to **Figure Q4** (e), a sinusoidal voltage is applied to the resistive circuit. Determine the following:

(i)	Irms	(2 Marks)
(ii)	I_p	(2 Marks)
(iii)	I_{pp}	(2 Marks)
(iv)	I_{avg}	(2 Marks)
(v)	I at positive peak	(2 Marks)

Q5 (a) Define 'mutual inductance' in transformer properties with aid of a definitive formula its definition.

(3 Marks)

(b) List **three** (3) types of transformer core material.

(3 Marks)

(c) Perform the following operations

(i)
$$\frac{(250 \angle 90^{\circ} + 175 \angle 75^{\circ})(50 - j100)}{(125 + j90)(35 \angle 50^{\circ})}$$
 (4 Marks)

(ii)
$$\frac{(100\angle 15^{\circ})(85 - j150)}{25 + j45}$$
 (3 Marks)

(d) A certain transformer has primary voltage for 418 Volt, primary winding 400 turns, secondary winding 100 turns and secondary load 654 Ω . Determine the following:

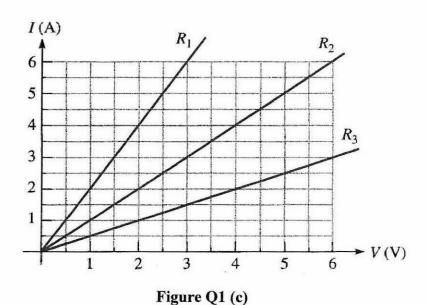
(i) I_P	(3 Marks)
(ii) I_S	(2 Marks)
(iii) V_S	(2 Marks)
(iv) P_L	(2 Marks)

(e) Construct and label completely the basic circuit of the transformer.

(3 Marks)

-END OF QUESTIONS -

TERBUKA


SEMESTER / SESSION : SEM I 2022/2023

COURSE NAME

: ELECTRICAL TECHNOLOGY

PROGRAMME CODE : DAE

COURSE CODE : DAE 11003

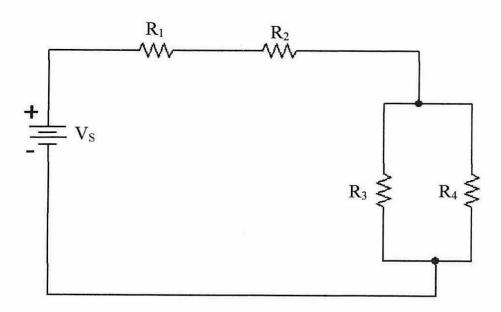


Figure Q1 (d)

SEMESTER / SESSION : SEM I 2022/2023

COURSE NAME

: ELECTRICAL TECHNOLOGY

PROGRAMME CODE : DAE

COURSE CODE

: DAE 11003

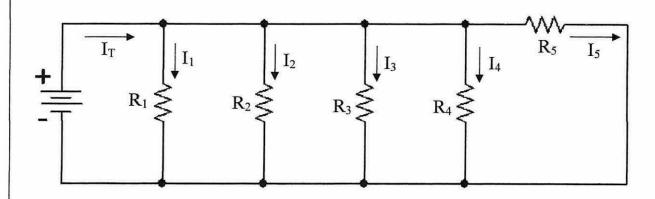


Figure Q2 (a)

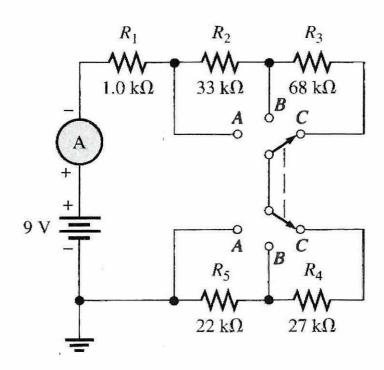


Figure Q2 (c)

SEMESTER / SESSION : SEM I 2022/2023

COURSE NAME

: ELECTRICAL TECHNOLOGY

PROGRAMME CODE : DAE

COURSE CODE : DAE 11003

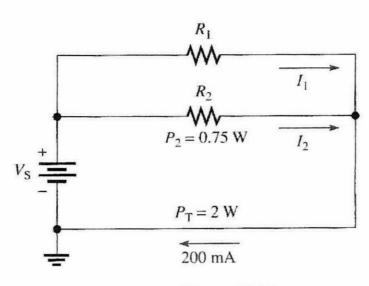
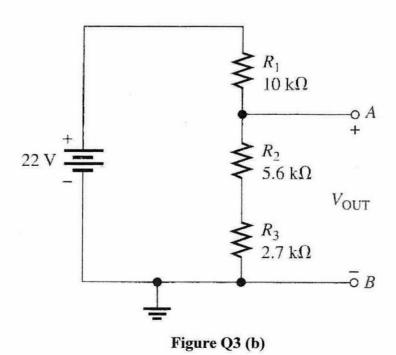



Figure Q2 (d)

SEMESTER / SESSION : SEM I 2022/2023

COURSE NAME

: ELECTRICAL TECHNOLOGY

PROGRAMME CODE : DAE

COURSE CODE : DAE 11003

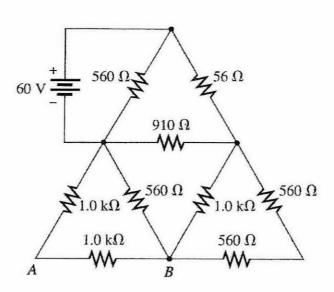


Figure Q3 (c)

S N N S

Figure Q4 (b)

SEMESTER / SESSION : SEM I 2022/2023

COURSE NAME : ELECTRICAL TECHNOLOGY

PROGRAMME CODE : DAE

COURSE CODE : DAE 11003

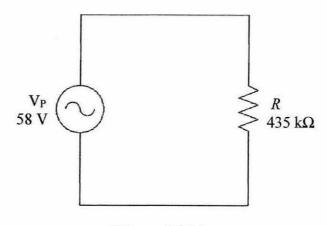


Figure Q4 (e)