

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION SEMESTER I SESSION 2021/2022

COURSE NAME

: HYDROLOGY

COURSE CODE

: DAC 21502

PROGRAMME CODE

: DAA

EXAMINATION DATE

: JANUARY / FEBRUARY 2022

DURATION

: 2 HOURS 30 MINUTES

INSTRUCTION

: 1. ANSWER FIVE (5) QUESTIONS

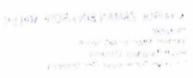
ONLY.

2. THIS FINAL EXAMINATION IS AN **ONLINE ASSESSMENT**

AND CONDUCTED VIA OPEN

BOOK.

THIS QUESTION PAPER CONSISTS OF TEN (10) PAGES



Q1	(a)	List two (2) occurrences which increase the water level in a reservoir.	(2 marks)
	(b)	Explain the following:	
		(i) Infiltration process.	(2 marks)
		(ii) Evaporation process.	(2 marks)
		(iii) Transpiration process.	(2 marks)
	(c)	By referring to Table 1 , calculate the following:	
		(i) Area of catchment (m ²).	(2 marks)
		(ii) Volume of precipitation (m ³).	(2 marks)
		(iii) Volume of evaporation (m ³).	(2 marks)
		(iv) Total of outflow in 15 days (m ³).	(2 marks)
		(v) Volume of seepage loss (m ³).	(2 marks)
		(vi) Total of inflow (m ³) in 15 days.	(2 marks)
Q2	(a)	List two (2) methods to solve missing point of precipitation.	(2 marks)
	(b)	Explain the Thiessen Polygon Method in determining average precipitation.	(6 marks)
	(c)	By referring to Table 2 , calculate the amount of precipitation (cm) for statio	n P

2

CONFIDENTIAL

(4 marks)

	(d)	By referring to Table 3 , calculate the following:	
		(i) Amount of rainfall (mm) in each interval time.	(4 marks
		(ii) Rainfall intensity (mm/hr).	(4 marks
Q3	(a)	List two (2) locations of evaporation pan in estimating rate of evaporation.	(2 marks
	(b)	Explain the Blanney-Criddle Method in determining rate of transpiration.	(6 marks
	(c)	By referring to Table 4 , calculate the following:	
		(i) Actual vapour pressure (mmHg) if the air temperature is 310 °K are humidity is 0.30	nd relative
		humidity is 0.39.	(3 marks)
		(ii) Evaporation rate (mm/day) if the wind speed is 3.5 mph.	(3 marks)
		(iii) Extraterrestrial radiation (mmH ₂ O/day) if the month is April at la south.	titude 37°
		(iv)Daily heat budget (mm/day) if the variable of B is 18.6 mmH ₂ O/day	(2 marks)
		(v) Potential evapotranspiration (mm/day) by referring to Figure Q3(c).	
Q4	(a)	List two (2) types of conceptual model of catchment area.	(2 marks)
	(b)	Explain the factors affecting watershed as follows:	
		(i) Land cover and use.	(2 marks)
		(ii) Watershed slope.	(2 marks)
		(iii)Watershed length.	(2 marks)

3

CONFIDENTIAL

TO THE THE PARTY OF THE PARTY O

	(c)	By referring to Table 5 , calculate the following:	
		(i) Average velocity (m/s).	(2 marks)
		(ii) Cross-sectional area (m ²).	(3 marks)
		(iii) Total discharge (m ³ /s).	(3 marks)
	(d)	By referring to Table 6 , calculate the following:	
		(i) Composite runoff coefficient.	(2 marks)
		(ii) Peak runoff (m ³ /s) if the rainfall intensity is 7 mm/hr.	(2 marks)
Q5	(a)	List two (2) components of bubble gauge recorder.	(2 marks)
	(b)	Describe floats as an equipment to measure velocity of water in a stream.	(6 marks)
	(c)	By referring to Table 7 , calculate the following:	
		(i) Time from beginning to peak (hr).	(2 marks)
		(ii) Peak discharge (m³/hr).	(2 marks)
		(iii) Point of unit hydrograph ordinates.	(2 marks)
	(d)	By referring to Table 8 , calculate the following:	
		(i) Direct runoff (m ³ /s).	(3 marks)
		(ii) River flow (m ³ /s).	(3 marks)

4

CONFIDENTIAL

CONFIDENTIAL

DAC 21502

Q6 (a) List two (2) functions of hydrologic routing.

(2 marks)

- (b) Describe the following:
 - (i) Pulse Method.

(3 marks)

(ii) Hydrologic routing.

(3 marks)

(c) By referring to **Table 9**, calculate the outflow (m³/s) from a river which weighting factor is 0.17 and travel time constant is 17 hours.

(12 marks)

Q7 (a) List two (2) characteristics of water table in unconfined aquifer.

(2 marks)

(b) Discuss the well of hydraulic in groundwater flow analysis.

(6 marks)

(c) By referring to **Table 10**, calculate the discharge from the well (m³/min) in an unconfined aquifer.

(6 marks)

(d) By referring to **Table 11**, determine rainfall excess (cm) which the surface runoff is 37773 m³ catchment area is 95 hectares.

(6 marks)

- END OF QUESTIONS -

5

CONFIDENTIAL

DAC 21502

FINAL EXAMINATION

SEMESTER/SESSION: SEM I / 2021/2022

COURSE NAME : HYDROLOGY

PROGRAMME CODE: DAA

COURSE CODE : DAC 21502

Table 1

Item	Value
Catchment area	377.73 km ²
Total of precipitation in 15 days	355 mm
Total of evaporation in 15 days	4.53 inch
Average of outflow in 15 days	11.95 m ³ /s
Total of seepage loss in 15 days	3.9 cm
Storage change in 15 days	521267400 m ³

Table 2

Station	Precipitation in a Month (cm)	Normal Annual Precipitation (cm)
P	?	111.9
Q	11.31	131.31
R	9.71	119.59
S	8.5	99.79
Т	9.01	109.71
U	10.71	125.77

Table 3

Time (min)	Cummulative Rainfall (mm)
0	0
15	2
30	5
45	9
60	14
75	20
90	29
105	39
120	55

FINAL EXAMINATION

SEMESTER/SESSION: SEM 1/2021/2022

COURSE NAME : HYDROLOGY

PROGRAMME CODE: DAA

COURSE CODE : DAC 21502

Table 4

Item	Cloud Ratio	Physchometer Constant	Reflection Coefficient	Latitude
Value	59%	0.27	31%	50° north
	Vapour Pressu	ire Based On Tem	perature	
Temperature (°C)	30	35	40	50
Value of Vapour Pressure (mmHg)	31.83	42.18	55.34	92.56
	Variables of	B Based On Temp	erature	
Temperature (°K)	305	310	315	320
Variables of B (mmH ₂ O/day)	17.46	18.6	19.85	21.15
Va		onthly Extraterrest 2O evaporated/day		
Latitude	January	February	March	April
South 10°	15.8	15.7	15.1	13.8
South 20°	16.8	16.0	14.6	12.5
South 30°	17.3	15.8	13.6	10.8
South 40°	17.3	15.2	12.2	8.8

CONFIDENTIAL

NEW AND SUPPLY OF PARTY. I THE WAY

FINAL EXAMINATION

SEMESTER/SESSION: SEM 1/2021/2022

COURSE NAME : HYDROLOGY

PROGRAMME CODE: DAA

COURSE CODE

: DAC 21502

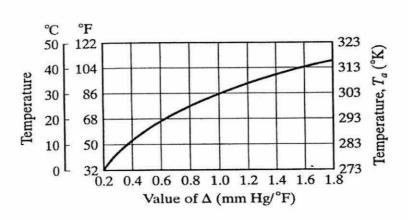


Figure Q3(c)

Table 5

Section No.	Depth (m)	Section Width (m)	Mean Velocity (m/s)
0	0	0	0
1	3.1	5.1	3.1
2	3.9	5.5	3.5
3	5.5	5.3	3.9
4	3.7	5.7	3.7
5	3.3	5.3	3.3
6	0	5.1	0

Table 6

Surface Type	Area (hectare)	Runoff Coefficient		
Parks	5	0.15		
Residential	31	0.35		
Industrial	13	0.55		
Apartment	7	0.7		
Business Lot	19	0.75		

43 MAN STORAGE STREET, STREET, STREET,

. . .

FINAL EXAMINATION

SEMESTER/SESSION: SEM I / 2021/2022

COURSE NAME : HYDROLOGY

PROGRAMME CODE: DAA

COURSE CODE : DAC 21502

Table 7

Item			
Peak Coefficient	0.19		
Basin Coefficient	1.5		
Duration of Rainfall	5-hr		
Length Along Main Stream From Outlet To Catchment's Centroid	15 km		
Length of Main Stream	39 km		
Basin Area	753 km^2		
Time Ratio	0.5		
Hydrograph Discharge Ratio	0.43		

Table 8

Time	Effective Rainfall	1	Unit		3	aph .mm		nate	S	Direct Runoff	5791-10 (C)473144586845	River Flow
(hr)	(mm)	1	19	11	0	0	0	0	0	(m^3/s)	(m^3/s)	(m^3/s)
1300	13										5	
1500	31										7	
1700	39										3	
1900											0	
2100		į									0	
2300											0	
0100											0	
0300											0	

Table 9

Time (hr)	Inflow (m ³ /s)	C_0I_2	C_1I_1	C_2O_1	Outflow (m ³ /s)
7	55	-	-	-	55
14	153				
21	351				
28	531				
35	135				
42	53				
49	15				

CONFIDENTIAL

DAC 21502

FINAL EXAMINATION

SEMESTER/SESSION: SEM I / 2021/2022

PROGRAMME CODE: DAA

COURSE NAME : HYDROLOGY COURSE CODE : DAC 21502

Table 10

Item	Value
Transmissivity	7531 m ² /day
Aquifer Thickness	0.057 km
Radial Distance From Observation Well 1 To Pumped Well	39 m
Drawdown At Observation Well 1	11 m
Radial Distance From Observation Well 2 To Pumped Well	75 m
Drawdown At Observation Well 2	9 m

Table 11

Time (hr)	Rainfall Intensity (cm/hr)
1	3
2	7
3	13
4	19
5	33
6	17
7	13
8	9
9	5

