

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION SEMESTER II SESSION 2021/2022

COURSE NAME

: ELECTRIC CIRCUIT I

COURSE CODE

: BEV 10303

PROGRAMME CODE : BEV

EXAMINATION DATE:

JULY 2022

DURATION

: 3 HOURS

INSTRUCTION

ANSWER ALL QUESTIONS. 1.

2.

THIS FINAL EXAMINATION IS AN

ONLINE

ASSESSMENT AND

CONDUCTED VIA OPEN BOOK.

THIS QUESTION PAPER CONSISTS OF SEVEN (7) PAGES

CONFIDENTIAL

BEV 10303

Q1	(a)	The current entering the positive terminal of a device is $i(t) = 10e^{3t}$ mA at voltage across the device is $v(t) = 10 \frac{di}{dt}$ V.	nd the	
		(i) Determine the charge delivered to the device between $t = 0$ and $t = 2$ (4 n	s. narks)	
		(ii) Calculate the power absorbed at $t = 2$ s. (4 n	narks)	
		(iii) Find the energy absorbed in 2 s. (4 n	narks)	
	(b)	By using passive sign convention and Kirchhoff's Laws, determine I_s in IQ1(b).		
		(4 n	narks)	
Q2	(a)	Find the voltage and the current values across each resistance for the circuit s	shown	
		in Figure Q2(a) if the power dissipated by R_1 is 30 W. (12 n	narks)	
	(b)	Referring to Figure Q2(b),		
		(i) Find the value of I_a and I_b . (6 n	narks)	
		(ii) Calculate the power of each resistor in the circuit and classify whether	r each	

(4 marks)

resistor is absorbing or delivering power.

CONFIDENTIAL

(iii)

BEV 10303

Q3	(a)	For the	e circuit shown in Figure Q3(a),	
		(i)	Determine the total current supplied by the dependent source that exists in the circuit.	
			(3 marks)	
		(ii)	Calculate the current flowing through the 20 $k\Omega$ resistor using the current divider rule.	
			(2 marks)	
		(iii)	Analyze the power, P , dissipated in the 20 k Ω resistor. (2 marks)	
	(b)	Based on the circuit in Figure Q3(b),		
		(i)	Determine the value of node voltages of V_1 , V_2 and V_3 by using nodal analysis.	
			(13 marks)	
		(ii)	Calculate the value of v_0 and i_0 . (6 marks)	
Q4	(a)	Based on the circuit in Figure Q4(a),		
		(i)	Compute the value of i_B and V_O . (9 marks)	
		(ii)	Determine the voltage drop across the 200 Ω resistor.	
			(5 marks)	

(4 marks)

Find the power supplied by the 25 V source.

CONFIDENTIAL

BEV 10303

- (b) The full-wave rectified sine wave shown in **Figure Q4(b)** is supplied to a load with a resistance value, $R = 6 \Omega$.
 - (i) Determine the Root Mean Square (RMS) value of this waveform.

(15 marks)

(ii) Calculate the average power dissipated in the 6 Ω resistor.

(3 marks)

- END OF QUESTIONS -

FINAL EXAMINATION

SEMESTER / SESSION : SEM II 2021/2022

COURSE NAME

: ELECTRIC CIRUIT I

PROGRAMMECODE: BEV

COURSE CODE

: BEV10303

Figure Q1(b)

FINAL EXAMINATION

SEMESTER / SESSION : SEM II 2021/2022

COURSE NAME

: ELECTRIC CIRUIT I

PROGRAMMECODE: BEV

COURSE CODE

: BEV10303

Figure Q2(b)

Figure Q3(a)

FINAL EXAMINATION

SEMESTER / SESSION : SEM II 2021/2022

COURSE NAME

: ELECTRIC CIRUIT I

PROGRAMMECODE: BEV

COURSE CODE

: BEV10303

Figure Q3(b)

Figure Q4(a)

7

CONFIDENTIAL