

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION SEMESTER II SESSION 2021/2022

COURSE NAME

ANALOG ELECTRONICS

COURSE CODE

BEJ10503/BEL10203/BEV10503

PROGRAMME CODE :

BEJ/BEV

EXAMINATION DATE :

JULY 2022

DURATION

• 3 HOURS

INSTRUCTION

1. ANSWER ALL QUESTIONS

2. THIS FINAL EXAMINATION IS AN **ONLINE ASSESSMENT AND**

CONDUCTED VIA CLOSED BOOK.

3. STUDENTS ARE **PROHIBITED** TO CONSULT THEIR OWN MATERIAL OR ANY EXTERNAL RESOURCES **DURING THE EXAMINATION** CONDUCTED VIA CLOSED BOOK

THIS QUESTION PAPER CONSISTS OF SIX (6) PAGES

CONFIDENTIAL

BEJ10503/BE10203/BEV10503

- Q1 The Zener regulator circuit in Figure Q1 has the following values: $R_L = 0.22 \text{ k}\Omega$, Zener voltage, $V_Z = 8 \text{ V}$ and the maximum power rating of the Zener diode is 400 mW. In order to maintain this regulator circuit with load voltage, V_L at 8 V and not exceed the maximum power rating of the Zener diode; determine the:
 - (a) minimum input voltage, $V_{i min}$

(6 marks)

(b) maximum input voltage, $V_{i max}$

(9 marks)

- Q2 (a) The emitter-stabilized bias circuit has the output characteristics as shown in Figure Q2(a). The circuit is biased at $I_{CQ} = 6$ mA and $V_{CEQ} = 10$ V.
 - (i) From the graph, determine I_{BQ} , I_{EQ} , $I_{C(sat)}$, $V_{CE(cutoff)}$, V_{CC} and beta (β).

(7 marks)

(ii) Hence, use the values in **part Q2(a)(i)** to calculate V_E , R_B , and R_C . Assume $V_{BE} = 0.7 \text{ V}$.

(6 marks)

- (b) Figure Q2(b) shows a BJT amplifier with $\beta = 120$ and $V_{BE} = 0.7 \text{ V}$.
 - (i) Calculate current, I_B , I_C and I_E and output voltage, V_{CE} for the circuit using exact analysis.

(8 marks)

(ii) Sketch the midband AC equivalent circuit using r_e model.

(3 marks)

(iii) Determine the input impedance, Zi, output impedance, Zo, voltage gain, A_V and current gain, A_i for the obtained answer in part $\mathbf{Q2(b)(ii)}$.

(6 marks)

CONFIDENTIAL

BEJ10503/BE10203/BEV10503

- Q3 Based on the FET amplifier circuit shown in Figure Q3,
 - (a) name the transistor and its configuration.

(3 marks)

(b) plot the transfer characteristics of the transistor.

(6 marks)

(c) determine V_{GSQ} and I_{DQ} using the graphical approach. (Given the $I_{DSS} = 9mA$, $V_p = -4.5V$, $rd = \infty$ and $g_m = 2.4$ mS.)

(12 marks)

(d) skecth the AC small-signal equivalent circuit of the FET amplifier circuit.

(3 marks)

(e) calculate the input impedance, Z_i , output impedance, Z_0 and voltage gain, A_v . (6 marks)

- Q4 (a) Capacitive impedance changes with frequency. Therefore, the effect of the capacitors in an amplifier circuit must be considered for the whole frequency region of operation.
 - (i) Describe how capacitances affect the gain of a BJT amplifier during the low, mid, and high frequency regions.

(6 marks)

(ii) For the common emitter amplifier circuit in **Figure Q4(a)**, determine the low cut-off frequency for each coupling and bypass capacitor. Next, determine the dominant low cut-off frequency of the circuit. (Assume $\beta = 150$, and $r_e = 22.7 \Omega$.)

(7 mark)

- (b) There are different ways to describe amplifiers. For instance, they can be described by their class of operation, by their inter-stage coupling, or by their frequency range.
 - (i) Explain **THREE** (3) classes of amplifier operation.

(3 marks)

(ii) Calculate the maximum efficiency, η for the class B push-pull amplifier shown in Figure Q4(b).

(5 marks)

(iii) Crossover distortion is seen as a problem arising from a class B push-pull amplifier. Elaborate the concept of the crossover distortion by using any appropriate illustration and labels.

(4 marks)

- END OF QUESTIONS -

Dr. Van Steffenden Sid Nati Zakt Kelua Janetan Kejurulahan Edektronik Fakuth Kejurulahan Edektrik Effektronik

CONFIDENTIAL

FINAL EXAMINATION

SEMESTER / SESSION : SEM II 2021/2022 COURSE NAME: ANALOG ELECTRONICS PROGRAMME CODE: BEJ/BEV

COURSE CODE: BEJ10503/BEL10203/BEV10503

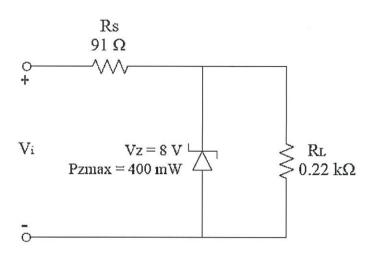


Figure Q1

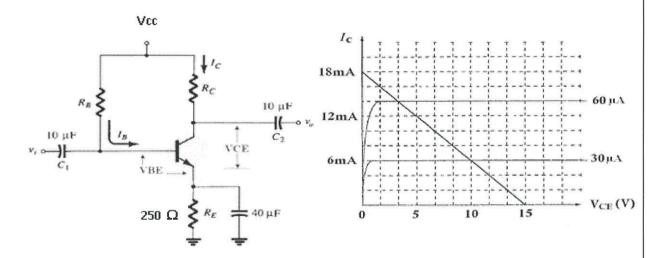


Figure Q2(a)

FINAL EXAMINATION

SEMESTER / SESSION : SEM II 2021/2022 COURSE NAME: ANALOG ELECTRONICS

PROGRAMME CODE: BEJ/BEV

COURSE CODE: BEJ10503/BEL10203/BEV10503

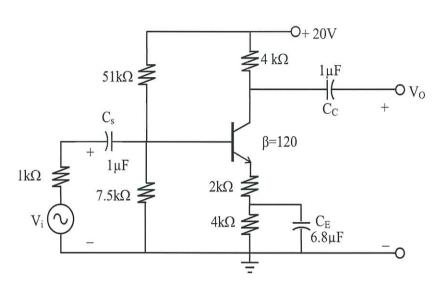


Figure Q2(b)

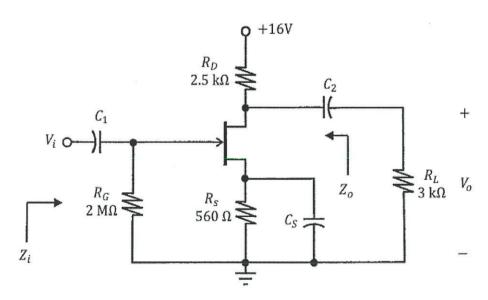


Figure Q3

FINAL EXAMINATION

SEMESTER / SESSION : SEM II 2021/2022 COURSE NAME: ANALOG ELECTRONICS PROGRAMME CODE: BEJ/BEV

COURSE CODE: BEJ10503/BEL10203/BEV10503

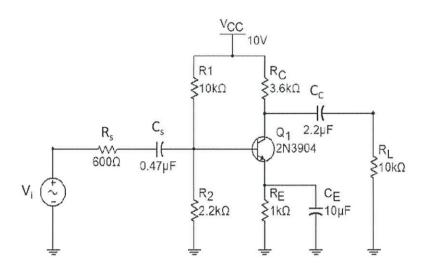


Figure Q4(a)

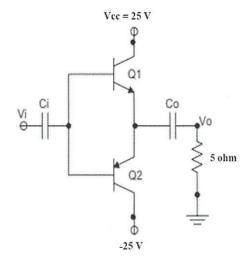


Figure Q4(b)