

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION **SEMESTER 2 SESSION 2021/2022**

COURSE NAME

: INSTRUMENTATION FOR PROCESS

CONTROL

COURSE CODE

: BEF 45902

PROGRAMME CODE : BEV

EXAMINATION DATE : JULY 2022

DURATION

: 3 HOURS

INSTRUCTION : 1. ANSWER ALL QUESTIONS.

2. THIS FINAL EXAMINATION IS ONLINE ASSESSMENT AND CONDUCTED VIA CLOSE BOOK.

3. STUDENTS ARE **PROHIBITED** TO CONSULT THEIR OWN

MATERIAL OR ANY EXTERNAL RESOURCES DURING THE

EXAMINATION CONDUCTED VIA

CLOSED BOOK

THIS QUESTION PAPER CONSISTS OF FIVE (5) PAGES

Q1	(a)	Descr	ibe the principle of pipe flow in process industry	(6 marks)
	(b)	Figure Q1(b) shows the powder conveyer system moves with 200 ft/min. T length platform is 7.5 ft and a particular weighing, is 80 lb of powder on the platform. Calculate		
		(i)	The flow rate of powder, Q in [lb/m]	
				(4 marks)
		(ii)	The flow rate of powder, Q in [lb/h]	
			·	(3 marks)
	(c) Water is pumped through a 1.5-in ft/s, the weight density, ρ is 85 lb/		is pumped through a 1.5-in diameter pipe with a flow velocine weight density, ρ is 85 lb/ft ³ . Calculate	ty, <i>D</i> is 6.5
		(i)	The valve flow coefficient, C_v	
				(2 marks)
		(ii)	The volume of flow rate, v	
				(3 marks)
		(iii)	The weight of flow rate, F	
				(3 marks)
		(iv)	The volume of flow rate, v_{new} if diameter pipe change to 3.0-	in
				(4 marks)
Q2	(a)	Describe		
		(i)	Three (3) the main issues in valve selection.	
		(ii)	The steps in selecting a control valve of process control.	(6 marks)
				(8 marks)
	(b)	Figure Q2(b) shows the hydraulic actuator converts a small force, F_I and working piston force, F_w with F_I is 400 N with 2cm -radius forcing piston, A_I . Calculate		
		(i)	The working piston force, F_w when the working piston has a is 10 cm.	radius, A_2
				(4 marks)

2

(ii) The hydraulic pressure, P_H .

(4 marks)

(iii) The hydraulic pressure, P_{Hnew} , if working piston force, F_{wnew} is 15 kN, and the radius of working piston, A_{2new} is 5 cm.

(3 marks)

- Q3 (a) Describe
 - (i) The purpose of analog signal conditioning

(6 marks)

(ii) Two (2) signal conditioning issues in process control

(6 marks)

(b) Temperature is to be measured in the range of 200°C to 400°C with an accuracy of ± 2 °C. The sensor is a resistance that varies linearly from 300 Ω to 1000 Ω for this temperature range. Power dissipated in the sensor must be kept below 5 mW. Develop analog signal conditioning that provides a voltage varying linearly from to V for this temperature range. The load is a high-impedance recorder.

(13 marks)

Q4 (a) Describe the basic structure of programmable logic controller

(6 marks)

- (b) Prepare the physical and programmed ladder diagram for the control problem shown in **Figure Q4(b)**. The global objective is to heat a liquid to a specified temperature and keep it there with stirring for 30 min. The hardware has the following characteristics:
 - 1. START push button is NO, STOP is NC.
 - 2. NO and NC are available for the limit switches.

The event sequence is

- 1. Fill the tank.
- 2. Heat and stir the liquid for 30 min.
- 3. Empty the tank.
- 4. Repeat from step 1

(10 marks)

(c) Describe **three** (3) types of communication protocols used in SCADA or DCS (distributed control system).

(9 marks)

-END OF QUESTIONS-

CONFIDENTIAL

TERBUKA

FINAL EXAMINATION

SEMESTER/SESSION SEM 2 / 2021/2022

PROGRAMME CODE

BEV

COURSE NAME

INSTRUMENTATION PROCESS

CONTROL

COURSE CODE

BEF 45902

Figure Q1(b)

Figure Q2(b)

FINAL EXAMINATION

SEMESTER/SESSION SEM 2 / 2021/2022

PROGRAMME CODE BEV

COURSE NAME

INSTRUMENTATION PROCESS

CONTROL

COURSE CODE

BEF 45902

