

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION SEMESTER II SESSION 2021/2022

COURSE NAME

RELIABILITY AND TESTABILITY IC

DEVICE

COURSE CODE

: BEJ 43803

PROGRAMME CODE :

BEJ

:

EXAMINATION DATE :

JULY 2022

DURATION

3 HOURS

INSTRUCTION

1. ANSWER ALL QUESTIONS.

2. THIS FINAL EXAMINATION IS AN **ONLINE** ASSESSMENT AND CONDUCTED VIA **CLOSED BOOK**.

3. STUDENTS ARE **PROHIBITED** TO CONSULT OTHER OWN MATERIAL OR ANY EXTERNAL RESOURCES DURING THE EXAMINATION CONDUCTED VIA CLOSED BOOK.

THIS QUESTION PAPER CONSISTS OF FOUR (4) PAGES

CONFIDENTIAL

Q1 (a) Explain in detail the different between fault and failure.

(10 marks)

(b) Calculate the reliability and sketch the fault tree of the system in **Figure Q1(b)**, when $R_A=R_B=R_C=0.80$, $R_D=0.95$ and $R_E=0.85$.

(15 marks)

Q2 (a) Define the term failure Analysis and explain the importance of failure analysis.

(5 marks)

(b) Creating a failure analysis document can give focus to key persons when it is already needed to check physical signs and symptoms of failure. With this, failure assessment can be more in-depth, which is a great way for your organization to understand how you have acquired these failures or how malfunctions existed within the different areas or materials in your operations. As a failure analysis engineer, you are given a sample from the customer request for Non Destructive Test (NDT) complaining no current flow between the input pin and output pin. Therefore, you need to provide an Eight Disciplines (8D) report to customer to answer the report.

(20 marks)

- Q3 A microprocessor system is used to control and monitor the lighting system at a theatre. A reliability analysis of the above system revealed the following details (a) to (e). Design a fault tree diagram for the microprocessor system by using the correct elementary fault tree symbols.
 - (a) The major failure event that the microprocessor will not operate is dependent upon either the single failure event of known cause (i.e., the microprocessor fails) or the major failure event that there is no current being supplied to the microprocessor.
 - (b) The major failure event that there is no current being supplied to the microprocessor is dependent upon four mutually exclusive events as follows:
 - 1. Major failure event—switch open.
 - 2. Single failure event of known cause—open-circuit wiring failure.
 - 3. Major failure event—fuse fails to open.
 - 4. Single failure event of known cause—power supply down.
 - (c) The major failure event of the switch being open is dependent upon two mutually exclusive events as follows:
 - 1. Single failure event of known cause—switch failure open.
 - 2. Single failure event of unknown cause—switch open.
 - (d) The major event that the fuse fails open is dependent upon two mutually exclusive events as follows:
 - 1. Single failure event of known cause—fuse fails to open.
 - 2. Major failure event—overload in circuit.
 - (e) The major event of an overload in the circuit is dependent upon two mutually exclusive events as follows:
 - 1. Single failure event of known cause—short circuit in wiring.
 - 2. Single failure event of known cause—surge on power supply.

(25 marks)

Sketch the system and develop the mathematical expression for the reliability of the following three system configurations assuming that each component in the system is identical and can exist in either an operational state or a failed state. The reliability of each component is given by the following expression:

$$R(t) = e^{-\lambda t}$$

For each system configuration calculate the system reliability given the following individual component parameters:

$$\lambda = 0.00439 \text{ failures/h}, t = 24 h$$

a) Sketch System configuration 1: simple parallel redundant system.
 System success criterion: one or more components are operating required for system success.

(5 marks)

b) Sketch System configuration 2: bimodal parallel-to-series redundant system. Parallel subsystem success criterion: one or more components are operating required for subsystem success. System success criterion: both subsystems operating successfully.

(10 marks)

c) Sketch System configuration 3: bimodal series-to-parallel redundant system .Series subsystem success criterion: both components are operating for subsystem success. System success criterion: one or more subsystems operating successfully.

(10 marks)

- END OF QUESTIONS -

FINAL EXAMINATION

SEMESTER / SESSION : SEM II 2021/2022

PROGRAMME CODE : BEJ

COURSE NAME

: RELIABILITY AND TESTABILITY

IC DEVICE

COURSE CODE

: BEJ 43803

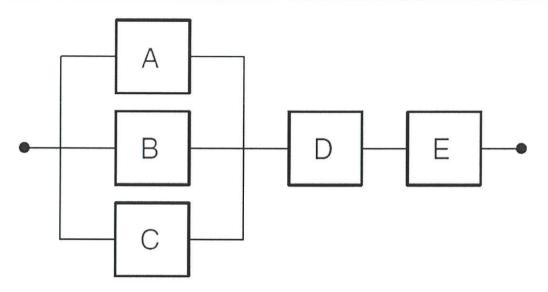


Figure Q1(b)