

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION **SEMESTER I SESSION 2021/2022**

COURSE NAME

: CIVIL ENGINEERING MATERIALS

COURSE CODE

BFC 10502

PROGRAMME CODE : BFF

EXAMINATION DATE :

JANUARY / FEBRUARY 2022

DURATION

: 2 HOURS

INSTRUCTION

: 1. ANSWER **ALL** QUESTIONS.

2. THIS FINAL EXAMINATION IS AN ONLINE ASSESSMENT AND CONDUCTED VIA CLOSE BOOK.

THIS QUESTION PAPER CONSISTS OF SEVEN (7) PAGES

CONFIDENTIAL

BFC 10502

- Q1 (a) There are various types of cement with different properties and their uses in construction industry. Propose suitable type of cement based on type of structures with appropriate reason.
 - (i) Reinforced concrete beam
 - (ii) Concrete wall rendering
 - (iii) Large dams
 - (iv) Foundations with high sulphate ground water

(8 marks)

(b) Cement is one of the most important material in building construction. However, as it is a manufactured material produced by various process, propose the procedure of testing to ensure compliance with standard consistency and strength of cement.

(12 marks)

(c) A sieve analysis test was conducted for sample of fine aggregate and obtained the results as shown in **Table Q1**. Calculate the percent passing of each sieve and classify the fineness of fine aggregate based on fineness modulus analysis.

(15 mark)

Q2 (a) As a design engineer at a batching plant company, you have been asked to design a concrete mix for pre-cast concrete beams with G40. By considering data given:

Characteristic strength of concrete, 40 N/mm² at 28 days Proportion defective, 10% (k=1.28) Standard deviation, 8 N/mm² Ordinary Portland Cement Slump required, 30-60 mm Maximum crush aggregate, 20 mm Relative density of crushed aggregate (SSD), 2.7 Percentage passing 600 µm, 60%

(i) Propose an appropriate design to fulfill the requirement of G40 by using a form in Appendix A.

(20 marks)

(ii) If the beam with a dimension of 300 mm x 600 mm and 6 m length was proposed, calculate the possible volume needed for the precast concrete beam and justify the quantities of cement, water, fine and coarse aggregate content for that volume.

(5 marks)

CONFIDENTIAL

BFC 10502

- (b) Some testing on fire clay brick was performed such as density, water absorption and compression test. The result obtained has shown in **Table Q2.**
 - (i) Calculate the average density of brick.

(3 marks)

(ii) Calculate the average percentage water absorption of brick.

(3 marks)

(iii) Determine the average compressive strength of brick in unit N/mm².

(4 marks)

Q3 (a) A simple lab test for specific gravity (SG), on two samples of timber indicate that sample A has SG=0.4 and sample B has SG=0.5. Based on this information alone, which wood sample would you choose as a structural member for your construction project? Briefly explain your reason.

(5 marks)

(b) Timber is a natural product and every natural product has some imperfection. Most of the defects in timber cause weakness of other sorts of difficulties. State **FIVE** (5) main types of defect in timber with an appropriate illustration.

(10 marks)

- (c) Draw a typical stress-strain behaviour of steel subjected to tension. On the graph, show the modulus of elasticity, the yield strength, the ultimate stress and the rupture stress.

 (8 marks)
- (d) There are various types of steel. Identify **SEVEN** (7) characteristic of high carbon steel.

(7 marks)

- END OF QUESTIONS -

CONFIDENTIAL

BFC 10502

APPENDIX A

Nan	ne: _			Matrix no.:
Stage	Item	1	Reference or calculation	Values
1	1.1	Characteristic strength	Specified	$\left\{ \begin{array}{llllllllllllllllllllllllllllllllllll$
	1.2	Standard deviation	Fig 3	N/mm² or no data N/mm²
	1.3	Margín	C1 or Specified	(k =) × = N/mm ² N/mm ²
	1.4	Target mean strength	C2	+ = N/mm²
	1.5	Cement strength class	Specified	42.5/52.5
	1.6	Aggregate type: coarse Aggregate type: fine		Crushed/uncrushed Crushed/uncrushed
	1.7	Free-water/cement ratio	Table 2, Fig 4	
- 25000	1.8	Maximum free-water/ cement ratio	Specified	Use the lower value
2	2.1	Slump or Vebe time	Specified	Slump mm or Vebe time s
	2.2	Maximum aggregate size	Specified	mm
	2.3	Free-water content	Table 3	kg/m³
3	3.1	Cement content	C3	+ kg/m³
	3.2	Maximum cement content	Specified	kg/m³
	3.3	Minimum cement content	Specified	kg/m³
				use 3.1 if \leq 3.2 use 3.3 if > 3.1 kg/m ³
	3.4	Modified free-water/cement ra	tio	
4	4.1	Relative density of aggregate (SSD)		known/assumed
	4.2	Concrete density	Fig 5	kg/m³
	4.3	Total aggregate content	C4	= kg/m ³
5	5.1	Grading of fine aggregate	Percentage passi	ing 600 µm sieve %
	5.2	Proportion of fine aggregate	Fig 6	%
	5.3	Fine aggregate content [C5	\[\tag{kg/m}^3\]
	5.4	Coarse aggregate content		= kg/m ³
	Quai	ntities	Cement (kg)	Water Fine aggregate Coarse aggregate (kg) (kg or litres) (kg) 10 mm 20 mm 40 mm
	2174	n³ (to nearest 5 kg) rial mix of		

terms in italics are optional limiting values that may be specified (see Section 7).

Concrete strength is expressed in the units N/mm² - 1 MN/mr² = 1 MN/m² = 1 MN/m²

FINAL EXAMINATION

SEMESTER/ SESSION: SEM I 2021/2022 PROGRAMME CODE : BFF COURSE NAME: CIVIL ENGINEERING MATERIALS COURSE CODE : BFC 10502

TABLE Q1

Sieve Size, mm	4.75	2.36	2.00	1.18	0.60	0.30	0.15	0.075	Pan
Weight Retained, g	0	56.9	83.1	83.1	151.4	40.4	72.0	58.3	15.6

TABLE Q2

			1110	V			
		c size	Water absorption test		Compression test		
Brick		Size	absorption test		iesi		
no.	length (mm)	Width (mm)	Depth (mm)	Mass (kg)	Mass dry (g)	Mass wet (g)	Maximum force (kN)
1	213	98	70	2.52	2.5	2.82	313
2	212	98	70	2.5	2.48	2.8	323
3	211	97	69	2.48	2.47	2.77	357

Cement strength			essive s Age (c	s (N/mm ²)	
class	aggregate	3	7	28	91
42.5	Uncrushed	22	30	42	49
	Crushed	27	36	49	56
52.5	Uncrushed	29	37	48	54
	Crushed	34	43	55	61

FIGURE Q2(a)

FINAL EXAMINATION

SEMESTER/ SESSION: SEM I 2021/2022

PROGRAMME CODE: BFF

COURSE NAME: CIVIL ENGINEERING MATERIALS

COURSE CODE

: BFC 10502

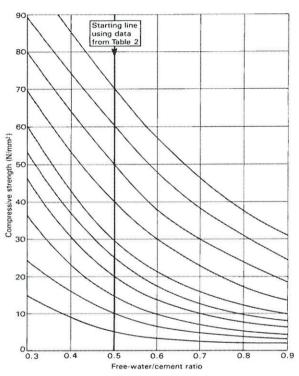


FIGURE Q2(b)

Slump (mm) $0-10 \quad 10-30 \quad 30-60 \quad 60-180$ Vebe time (s) $>12 \quad 6-12 \quad 3-6 \quad 0-3$

Maximum size

of aggregate Type of aggregate

	15.5				
10	Uncrushed	150	180	205	225
	Crushed	180	205	230	250
20	Uncrushed	135	160	180	195
	Crushed	170	190	210	225
40	Uncrushed	115	140	160	175
	Crushed	155	175	190	205

Note: When coarse and fine aggregates of different types are used, the free-water content is estimated by the expression:

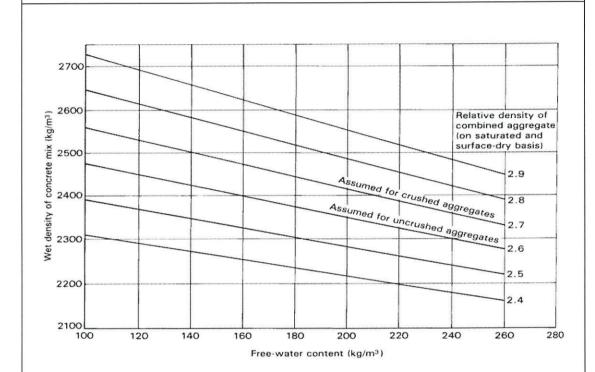
2/3/W + 1/3/W

f

where W_{f} = free-water content appropriate to type of fine aggregate

and Wc = free-water content appropriate to type of coarse aggregate.

FIGURE Q2(c)



FINAL EXAMINATION

SEMESTER/ SESSION: SEM I 2021/2022 COURSE NAME: CIVIL ENGINEERING MATERIALS PROGRAMME CODE: BFF

COURSE CODE

: BFC 10502

FIGURE Q2(d)

Maximum aggregate size: 20mm

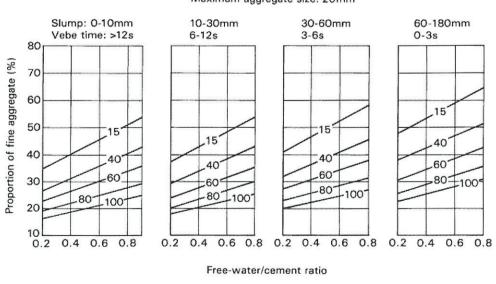


FIGURE Q2(e)