

# UNIVERSITI TUN HUSSEIN ONN MALAYSIA

# **FINAL EXAMINATION** (TAKE HOME) **SEMESTER II SESSION 2020/2021**

COURSE NAME

WIRELESS SENSOR AND MOBILE

AD HOC NETWORKS

COURSE CODE

: BEJ 41503 / BEB 42003

PROGRAMME CODE : BEJ

EXAMINATION DATE : JULY 2021

**DURATION** 

: 3 HOURS

INSTRUCTION

: ANSWERS ALL QUESTIONS

**OPEN BOOK EXAMINATION** 

THIS QUESTION PAPER CONSISTS OF FIVE (5) PAGES

CONFIDENTIAL

### CONFIDENTIAL

#### BEJ 41503 / BEB 42003

- Q1 Node lifetime and wireless sensor networks lifetime are fundamentally crucial in the implementation of wireless sensor networks for forest fire monitoring. These nodes and network lifetime are determined by the energy consumption, thus, the energy consumption is the main concern in a sensor node and the wireless sensor network system. Consider the wireless sensor networks which are organized as cluster.
  - (a) Differentiate the operation of cluster head and ordinary node for one round operation using flow diagram.

(8 marks)

- (b) Consider a wireless sensor network shown in Figure Q1(b). It consists of two cluster headers, CH1 and CH2. Both CH1 and CH2 are connected to two different ordinary nodes. Assume that the sources of energy consumption are from the ordinary nodes and Cluster Head activities given by Table Q1(b)(i).
  Assume the free space fading as the propagation model with exponent 2, the number of sensing bit is b, and the weighting factor for sensing, transmitting and receiving are given by { h<sub>2</sub>, h<sub>3</sub> } = {1.4, 1.6}.
  - Derive the total energy model for the network in terms of the variables concerned.

(12 marks)

(ii) Calculate the total energy consumed for the network. The variables are shown in **Table Q1(b)(ii)**.

(5 marks)

- Q2 Low Energy Adaptation Clustering Hierarchy (LEACH) algorithm is one of well known WSN routing algorithms. It is hierarchical based and need to select a leader in each round of data transmission.
  - (a) Distinguish the characteristics of LEACH algorithm.

(8 marks)

(b) Examine in detail the operation of LEACH, including all of its phases involved, the flow diagrams and TWO (2) mechanisms of cluster head selection.

(17 marks)

### CONFIDENTIAL

#### BEJ41503 / BEB42003

Q3 (a) Routing protocol is one of the very important elements in the management of mobile ad hoc network. State and explain briefly THREE (3) design objectives of routing protocols with regards to wireless mobile ad hoc network.

(6 marks)

- (b) Ad Hoc On Demand Distance Vector (AODV) is a well-known protocol for mobile ad hoc network. It consists of a number of sub-protocols namely Route Discovery and Route Reply.
  - (i) Explain the operation of Route Discovery Protocol at the source, intermediate and destination.

(7 marks)

- (ii) Analyze **FOUR (4)** optimization processes as applied to AODV protocol. (12 marks)
- Q4 (a) In the second model WSN/IoT Integration, it defines the adaptation layer of IPv6 over IEEE802.15.4 by a layer known as Low Power Wireless Personal Area Networks (6LoWPAN). One of the optimization processes is by IPv6 Header Compression.
  - (i) Describe the technique of IPv6 Header Compression.

(5 marks)

(ii) Calculate the percentage of improved protocol efficiency by the IPv6 Header compression.

(4 marks)

(b) For the WSN/IoT Integration one of the optimization processes is the IPv6 Header Compression as mentioned in Q4(a). Evaluate FOUR (4) other optimization mechanisms in which 6LOWPAN protocol is utilized to adapt the integration of IPv6 to the 802.15.4 protocol.

(16 marks)

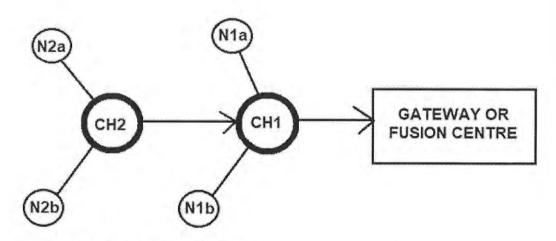
-END OF QUESTIONS -



BEJ 41503 / BEB 42003

#### FINAL EXAMINATION

SEMESTER / SESSION : SEM II / 2020/2021


COURSE NAME

: WIRELESS SENSOR AND MOBILE

AD HOC NETWORKS

PROGRAMME CODE: BEJ

COURSE CODE: BEJ41503/BEB42003



CH1, CH2 - cluster head

N1a, N1b - ordinary nodes connected to CH1

N2a, N2b - ordinary nodes connected to CH2

Figure Q1(b)

## Table Q1(b)(i)

| Types of Node     | Cluster Head  | Ordinary Nodes |
|-------------------|---------------|----------------|
| Sources of Energy | Sensing,      | Sensing and    |
| Consumption       | Receiving and | Transmitting   |
|                   | Transmitting  |                |

### FINAL EXAMINATION

SEMESTER / SESSION : SEM II / 2020/2021

COURSE NAME

: WIRELESS SENSOR AND MOBILE

AD HOC NETWORKS

PROGRAMME CODE: BEJ

COURSE CODE: BEJ41503/BEB42003

Table Q1(b)(ii)

| SYMBOL       | DESCRIPTION                                       | VALUE                        |  |
|--------------|---------------------------------------------------|------------------------------|--|
| $N_{cyc}$    | Number of clock cycles per task                   | $0.97 \times 10^6$           |  |
| Cavg         | Average capacitance switch per cycle              | 22pF                         |  |
| $V_{sup}$    | Supply voltage to sensor                          | 2.7 V                        |  |
| f            | Sensor frequency                                  | 191.42 MHz                   |  |
| $n_p$        | Constant depending on the processor               |                              |  |
| n            | Path loss exponent                                | 2 or 4                       |  |
| $I_{\sigma}$ | Leakage current                                   | 1.196 mA                     |  |
| $V_t$        | Thermal voltage                                   | 0.2 V                        |  |
| b            | Transmit packet size                              | 2048 bits                    |  |
| $E_{elec}$   | Energy dissipation: electronics                   | 50 nJ/bit                    |  |
| $E_{amp}$    | Energy dissipation: power amplifier               | 100<br>pJ/bit/m <sup>2</sup> |  |
| $T_{tranON}$ | Time duration: sleep -> idle                      | 2450 μs                      |  |
| TtranOFF     | Time duration: idle -> sleep                      | 250 μs                       |  |
| $I_A$        | Current: wakeup mode                              | 8 mA                         |  |
| $I_S$        | Current: sleeping mode                            | 1 μΑ                         |  |
| $T_A$        | Active Time                                       | 1 ms                         |  |
| $T_S$        | Sleeping Time                                     | 299 ms                       |  |
| $T_{tr}$     | Time between consecutive packets                  | 300 ms                       |  |
| Tsens        | Time duration: sensor node sensing                | 0.5 mS                       |  |
| Isens        | Current: sensing activity                         | 25 mA                        |  |
| Iwrite       | Current: flash writing 1 byte data                | 18.4 mA                      |  |
| $I_{read}$   | Current: flash reading 1 byte data                | 6.2 mA                       |  |
| $T_{write}$  | Time duration: flash writing                      | 12.9 mS                      |  |
| $T_{read}$   | Time duration: flash reading                      | 565 μs                       |  |
| $E_{actu}$   | Energy dissipation: actuation                     | 0.02 mJ                      |  |
| $h_1$        | CH weight factor, for processing                  | 1.2                          |  |
| $h_2$        | CH weight factor, for transmission and receiving. | 1.4                          |  |
| $h_3$        | CH weight factor, for sensing                     | 1.6                          |  |
| $h_4$        | CH weight factor, for sensor logging              | 1.8                          |  |
| d            | Transmission range                                | 30 m                         |  |