

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION (ONLINE) SEMESTER II SESSION 2020/2021

COURSE NAME	:	INTELLIGENT CONTROL SYSTEM
COURSE CODE	:	BEH41803/BEJ44103
PROGRAMME CODE	1	BEJ
EXAMINATION DATE	:	JULY 2021
DURATION	:	3 HOURS
INSTRUCTION	:	ANSWERS ALL QUESTIONS OPEN BOOK EXAMINATION

THIS QUESTION PAPER CONSISTS OF FOUR (4) PAGES

CONFIDENTIAL

TERBUKA

BEH 41803/BEJ44103

Part A (Objective)

Q1 This section contains 20 questions and answer all the questions from the following link:

bit.ly/BEH41803_FE

(50 marks)

Part B (Subjective)

Q2 By referring to Convolutional Neural Network (CNN) code in Figure Q2.

(a) Illustrate the model structure with details of layer labelling

(3 marks)

(b) Analyze image output shape and its total trainable parameters for each stack of the CNN layer.

(20 marks)

(c) Illustrate the new model structure if VGG pre-trained model is to be integrated to the existing CNN structure.

(2 marks)

Q3 A fuzzy logic based washing machine system has been simplified by using only two inputs and one output. The input variables are Degree-of-Dirt (DD) and Type-of-Dirt (TD); the output variable is Washing-Time (WT). The fuzzy rule-base consist of:

Rule 1 : IF DD is Large	AND TD is Greasy	THEN WT is Long	
Rule 2: IF DD is Medium	AND TD is Greasy	THEN WT is Long	
Rule 3: IF DD is Small	AND TD is Greasy	THEN WT is Short	
Rule 4 : IF DD is Large	AND TD is Medium	THEN WT is Long	
Rule 5 : IF DD is Medium	AND TD is Medium	THEN WT is Short	
Rule 6 : IF DD is Small	AND TD is Medium	THEN WT is Short	
Rule 7 : IF DD is Large	AND TD is Not Greasy	THEN WT is Short	
Rule 8 : IF DD is Medium	AND TD is Not Greasy	THEN WT is Very Short	
Rule 9 : IF DD is Small	AND TD is Not Greasy	THEN WT is Very Short	

CONFIDENTIAL

BEH 41803/BEJ44103

The DD and TD having the same universe of discourse [0 - 100], Meanwhile the WT is represented in the universe [0 - 60]. The membership functions for each variable are as follows:

$$Small = \left\{ \frac{1}{0} + \frac{1}{10} + \frac{9}{40} \right\} \qquad Long = \left\{ \frac{9}{30} + \frac{1}{50} + \frac{1}{60} \right\}$$

$$Medium = \left\{ \frac{9}{20} + \frac{1}{40} + \frac{1}{70} + \frac{9}{80} \right\} \qquad Short = \left\{ \frac{9}{20} + \frac{1}{30} + \frac{9}{40} \right\}$$

$$Large = \left\{ \frac{9}{60} + \frac{1}{90} \right\} \qquad Very \ Short = \left\{ \frac{9}{0} + \frac{1}{10} + \frac{9}{30} \right\}$$

$$Greasy = \left\{ \frac{9}{60} + \frac{1}{80} + \frac{1}{100} \right\}$$

Not Greasy = $\left\{ \frac{0}{0} + \frac{1}{30} + \frac{0}{50} \right\}$

(a) Sketch the input and output of the fuzzy membership function respectively.

(9 marks)

(b) Investigate the model output before defuzzification using Mamdani implication relation and disjunctive aggregator when DD is 36 and TD is 92.

(9 marks)

(c) Analyze the crisp value of *WT* from the composed model in Q3 (b) using Bisector of Area (BOA) method. (7 marks)

-END OF QUESTIONS -

BEH 41803/BEJ44103

FINAL EXAMINATION

SEMESTER / SESSION : SEM II / 2020/2021 COURSE NAME : INTELLIGENT CO

: SEM II / 2020/2021 : INTELLIGENT CONTROL SYSTEM PROGRAMME CODE : BEJ COURSE CODE : BEH 41803/BEJ44103

```
cnn_model = models.Sequential()
cnn_model.add(layers.Conv2D(16,(11,11), activation='relu', input_shape=(256,256,3)))
cnn_model.add(layers.MaxPooling2D((2,2)))
cnn_model.add(layers.Conv2D(32,(7,7),activation='relu'))
cnn_model.add(layers.MaxPooling2D((2,2)))
cnn_model.add(layers.Conv2D(64,(1,1),activation='relu'))
cnn_model.add(layers.Conv2D(128,(5,5),activation='relu'))
cnn_model.add(layers.MaxPooling2D((2,2)))
cnn_model.add(layers.Conv2D(256,(3,3),activation='relu'))
cnn_model.add(layers.MaxPooling2D((2,2)))
cnn_model.add(layers.Conv2D(512,(3,3),activation='relu'))
cnn_model.add(layers.Flatten())
cnn_model.add(layers.Dense(512, activation='relu'))
cnn_model.add(layers.Dense(1,activation='relu'))
```

Figure Q2

4

TEDRIK