

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION (TAKE HOME) SEMESTER II SESSION 2020/2021

COURSE NAME

ELECTRIC CIRCUITS 1

COURSE CODE

BEJ 10303

PROGRAMME CODE

BEJ

•

EXAMINATION DATE

JULY 2021

DURATION

3 HOURS

INSTRUCTION

ANSWER ALL QUESTIONS

TERBUKA

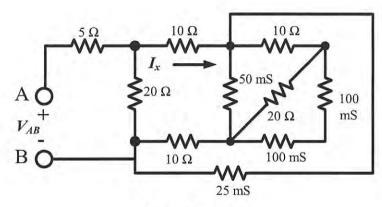
THIS QUESTION PAPER CONSISTS OF FIVE (5) PAGES

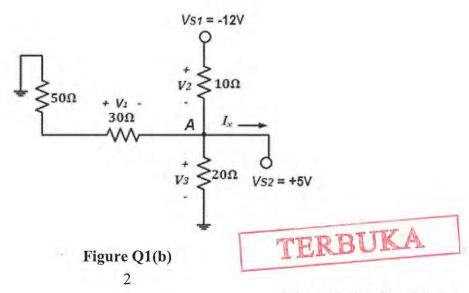
- Q1 (a) A series-parallel circuit network is given in Figure Q1(a).
 - (i) Determine the equivalent resistance at terminal A-B.

(8 marks)

(ii) If a voltage source, V_{AB} is connected at terminal A-B, with a value of 10V, calculate the current, I_x .

(4 marks)




Figure Q1(a)

- (b) An electrical engineer receives a wiring network diagram of a pet house as shown in **Figure Q1(b)**. He asks for your help to do the following tasks:
 - (i) Redraw the network circuit with the unknowns (node A, V_1 , V_2 , V_3 , and I_x) so that the relationship between branches become significantly clearer.

(5 marks)

- (ii) Using suitable approach, find V_1 , V_2 , V_3 , and I_x if $V_{SI} = -12$ V and $V_{S2} = 5$ V. (6 marks)
- (iii) Calculate power at 30Ω resistor.

(2 marks)

- Q2 (a) Calculate the current through each passive element of the circuit network in Figure Q2(a) using:
 - (i) Nodal analysis. Identify in your answer how to find the v_a , v_b , v_I and v_2 . (12 marks)
 - (ii) Supermesh analysis. (Remark: No need to find the v_a , v_b , v_1 and v_2). (6 marks)

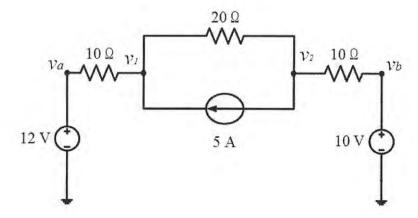
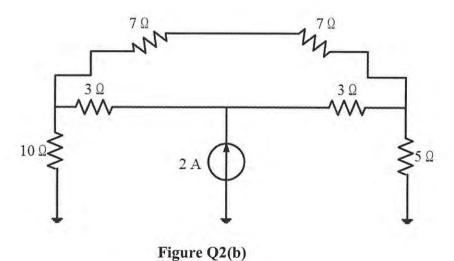
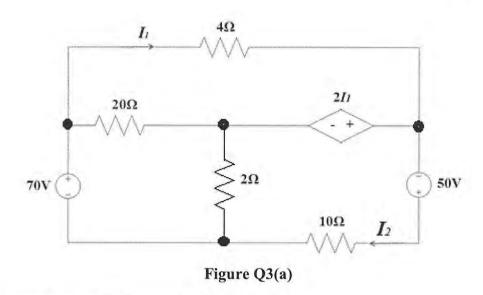



Figure Q2(a)

(b) Determine the voltage potential across 5Ω resistor in Figure Q2(b).


(7 marks)

3

Q3 (a) In the network shown in Figure Q3(a), two independent voltage sources act on the elements in the circuit. By using superposition theorem, calculate the current I₂.

(15 marks)

- (b) In the circuit shown in Figure Q3(b),
 - (i) Find the value of open circuit voltage, V_{TH} and equivalent resistance, R_{TH} at terminal a-b.

(8 marks)

(ii) Draw the Thevenin equivalent circuit at terminal a-b.

(2 marks)

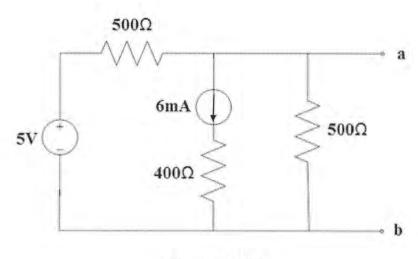


Figure Q3(b)

4

- Q4 (a) The circuit shown in **Figure Q4(a)** is used to represent one part of the overall automatic watering system for a plantation in Batu Pahat with the input voltage, $v_s(t)$.
 - (i) Compute the instantaneous current flows through $1k\Omega$ resistor over a period and sketch the waveform.

(10 marks)

(ii) Calculate the average and the effective current flows through $1k\Omega$ resistor. (4 marks)

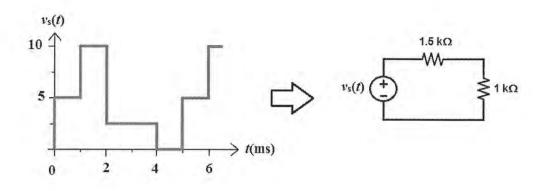


Figure Q4(a)

(b) Given a voltage and current waveforms (t) = $160 \cos 50t \text{ V}$ and (t) = $-20 \sin (50t - 30^\circ) \text{ A}$, being applied to a passive linear network. Find the instantaneous power and average power absorbed by the passive linear network.

(5 marks)

(c) By using an example of a sine wave, describe the difference among the instantaneous value, the average value, and the effective value of this voltage signal.

(6 marks)

- END OF QUESTIONS -

5

