

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION (ONLINE) SEMESTER II **SESSION 2020/2021**

COURSE NAME

: ANALOG ELECTRONICS

COURSE CODE

: BEJ 10503

PROGRAMME CODE :

BEJ

EXAMINATION DATE : JULY 2021

DURATION

: 3 HOURS

INSTRUCTION

: ANSWERS ALL QUESTIONS.

THIS QUESTION PAPER CONSISTS OF SIX (6) PAGES

Q1 (a) Explain TWO (2) reasons a pure semiconductor behaves like an insulator at absolute zero temperature.

(4 marks)

- (b) Zener diodes usually operate under reverse biased condition.
 - (i) Explain the operation of a zener diode.

(3 marks)

(ii) Sketch the voltage-current graph for the zener diode.

(3 marks)

Q2 (a) A diode labelled as Si has characteristic *I-V* graphs shown in **Figure Q2(a)**. Obtain the operating point for the diode in the given circuit.

(5 marks)

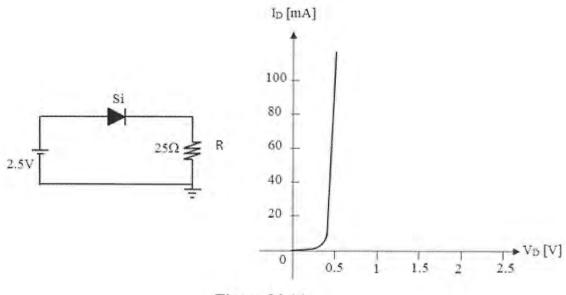


Figure Q2 (a)

(b) Based on Figure Q2(a), if the resistor, R is changed to 50 Ω , determine the new current and voltage across the diode. Describe the load line condition.

(5 marks)

Q3 (a) **Figure Q3(a)** shows a BJT amplifier with $I_B = 26 \mu A$ and $V_{BE} = 0.67 \text{ V}$.

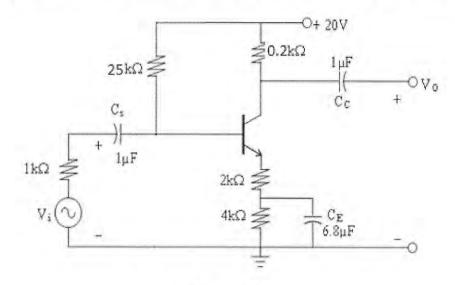


Figure Q3(a)

(i) What is the function of the emitter resistor in the circuit as shown in Figure Q3(a)?

(2 marks)

- (ii) Calculate current, β , I_C , I_E and output voltage, V_{CE} for the circuit using exact analysis. (8 marks)
- Draw the midband AC equivalent circuit using r_e model. (iii) (6 marks)
- (iv) Determine the input impedance, Z_i , output impedance, Z_o , voltage gain, A_V , and current gain, A_i , based on the obtained answer in part Q3(a)(ii). (12 marks)
- (b) What is the advantage of r_e model?

(2 marks)

Q4 (a) Sketch the transfer characteristics curve of JFET, D-MOSFET and E-MOSFET. Then, formulate the drain current, I_D for each curve.

(9 marks)

(b) **Figure Q4(b)** shows the JFET self-bias configuration. Determine V_{GSQ} , I_{DQ} , Z_i , Z_o , and A_V for the circuit. Given $I_{DSS} = 9$ mA, $V_P = -4.5$ V, $rd = \infty$, and $g_m = 2.4$ mS. Show all your calculations with support of sketching diagrams. (Hint: transfer curve and ac analysis)

(21 marks)

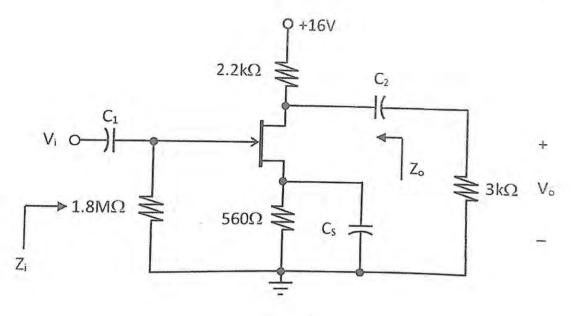
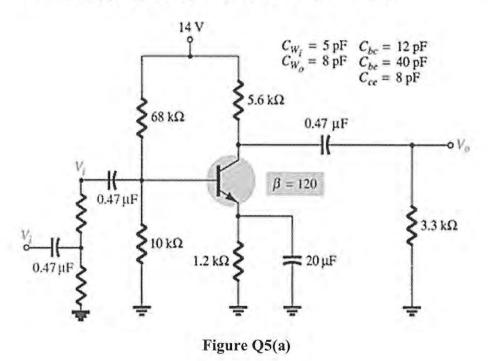



Figure Q4(b)

Q5 (a) Figure Q5(a) is a BJT amplifier circuit which has an infinite value of AC collector resistance, r_o (or r_c) with $r_e = 28.48 \Omega$ and $A_v = -72.91$;

(i) Determine the high cut-off frequencies, f_{Hi} and f_{Ho} .

(8 marks)

(ii) The internal capacitors influenced the high frequency response. In your opinion, how to minimize the effect of internal capacitors?

(2 marks)

- Q6 (a) A class B amplifier with a power supply of $V_{CC} = 30$ V is used to deliver a 25 V peak signal to a 15 Ω speaker.
 - (i) Propose a circuit diagram for the amplifier.

(1 mark)

(ii) Determine the input power, P_{in} , output power, P_{out} , and circuit efficiency, η for the amplifier.

(5 marks)

(iii) Evaluate the circuit performance in terms of its efficiency as a class B amplifier based on the value obtained in Q6(a)(ii).

(1 mark)

(b) Analyse the crossover distortion problem that arises in the class B push-pull amplifier by using an appropriate illustration of V_{in} and V_{out} .

(3 marks)

-END OF QUESTIONS -

