

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION (ONLINE) SEMESTER I **SESSION 2020/2021**

COURSE NAME

: FLUID MECHANICS

COURSE CODE

: DAM 22003

PROGRAMME CODE : DAM

EXAMINATION DATE : JANUARY/FEBRUARY 2021

DURATION

: 3 HOURS

INSTRUCTION

: ANSWER FIVE (5) QUESTIONS

ONLY

OPEN BOOK EXAMINATION

THIS QUESTION PAPER CONSISTS OF SIX (6) PAGES

CONFIDENTIAL

DAM22203

01	/ \	D 1 1 1	C 11 '			4 4
Q1	(a)	Explain the	following	matters and	orve an	example each
V.	(4)	L'Apiani me	TOTIO WILLS	mancis and	i give an	champic cach

- (i) control mass
- (ii) control volume
- (iii) first law of thermodynamics
- (iv) adiabatic process
- (v) isobatic process

(10 marks)

- (b) Figure Q1(b) showed a river flowing steadily at a rate of 270 m³/s is considered for hydroelectric power generation. It is determined that a dam can be built to collect water and release it from an elevation difference of 70 m to generate power. [Given: Gravitational acceleration, $g = 9.81 \text{ms}^{-2}$; Density of water, $\rho = 1000 \text{ kg/m}^{-3}$]
 - (i) calculate the potential energy (PE) of the river water per unit mass (kJ/kg);

(5 marks)

(ii) determine the power generated (\dot{W}) from the river water after the dam is filled in MW unit.

(5 marks)

- Q2 (a) Find the internal energy, $\underline{u}(kJ/kg)$ of water at the given states below for 6 MPa
 - (i) saturated vapour, u_g
 - (ii) saturated liquid, $u_{\rm f}$
 - (iii) quality (x) = 0.65
 - (iv) T = 635 °C
 - (v) $T = 100 \, ^{\circ}C$

(10 marks)

(b) A piston cylinder device has a mass of 10 grams consists an oxygen gas at 100 °C and 20 kPa. The device is then cooled down until the temperature is 0 °C. The pressure of the final state is isobaric.

[Given: Gas constant of oxygen is $R = 0.2598 \, kJ/kg \cdot K$]

(i) state your assumption

(1 mark)

(ii) determine the change in the device's volume as the result of the cooling. (9 marks)

2

CONFIDENTIAL

List four (4) types of steady flow engineering devices. **Q**3 (a) (4 marks)

(b) Explain steady state system.

(2 marks)

Steam enters a nozzle at 400°C and 800 kPa with a velocity of 10 m/s, and leaves (c) at 300°C and 200 kPa while losing heat at a rate of 25 kW. For an inlet area of 800 cm², determine the velocity at the nozzle exit

(7 marks)

(d) Refrigerant-134a enters a diffuser steadily as saturated vapor at 800 kPa with a velocity of 120 m/s, and it leaves at 900 kPa and 40°C. The refrigerant is gaining heat at a rate of 2 kJ/s as it passes through the diffuser. If the exit area is 80 percent greater than the inlet area, determine the mass flow rate of the refrigerant.

(7 marks)

- Name and draw the schematic diagram for steady state devices based on the 04 (a) function given below:
 - to transfer heat between one or more fluids which is separated. (i)

(2 marks)

to cause significant pressure and temperature drop in a fluid. (ii)

(2 marks)

(iii) to increases the pressure of a fluid by slowing it down.

(2 marks)

- The function of compressor in air conditioning unit is to compress and circulate (b) refrigerant gas throughout the system. Refrigerant-134a (R-134a) enters an adiabatic compressor, as saturated vapor at 24°C and leaves at 0.8 MPa and 60°C. The mass flow rate (m) of the refrigerant is 1.2 kg/s. Determine:
 - the power input (\dot{W}) to the compressor in kJ/s (i)

(5 marks)

the volume flow rate (\dot{v}) of the refrigerant at the compressor inlet in m³/s. (ii)

(2 marks)

3

CONFIDENTIAL

TERBUKA

DAM22203

- (c) Mixing chamber are devices that mix two streams of fluid with different temperature into one single stream with equilibrium temperature. Liquid water at 300 kPa and 20°C is heated in a chamber by mixing it with superheated steam at 300 kPa and 300°C. Cold water enters the chamber at a rate of 1.8 kg/s. If the mixture leaves the mixing chamber at 60°C, determine:
 - (i) the enthalpy (h) for cold water, superheated steam and mixture in kJ/kg.

 (3 marks)
 - (ii) the mass flow rate (\dot{m}) of the superheated steam required in kg/s (4 marks)
- Q5 (a) Explain difference between heat engine, heat pump and refrigerator based on working principle and function.

 (6 marks)
 - (b) The second law of thermodynamic can be expressed by Kelvin Planck Statement and Clasius Statement. Explain both statement using your own words.

 (4 marks)
 - (c) Refrigerant-134a enters the evaporator coils placed at the back of the freezer section of a household refrigerator at 120 kPa with a quality of 20 percent and leaves at 120 kPa and -20°C. If the compressor consumes 450 W of power and the COP the refrigerator is 1.2, determine
 - (i) the mass flow rate of the refrigerant

(4 marks)

(ii) the rate of heat rejected to the kitchen air.

(? marks)

(d) A heat pump used to heat a house runs about one third of the time. The house is losing heat at an average rate of 22,000 kJ/h. If the Coefficient of Performance (COP) of the heat pump is 2.8, determine the power the heat pump draws when running.

(4 marks)

DAM22203

- Q6 (a) A system undergoes a process between two fixed states first in a reversible manner and then followed by an irreversible manner.
 - (i) explain reversible process and irreversible process in term of thermodynamics principle

(? marks)

(ii) for which case is the entropy change greater? Why?

(2 marks)

- (b) Prof Z claims to have invented a newly concept of a heat engine that develops a thermal efficiency of 85 percent when operating between two heat reservoirs at 1000 K and 300 K. Proof and evaluate whether Prof Z claim is true or false.

 (4 marks)
- (c) A 0.5-m³ rigid tank contains refrigerant-134a initially at 200 kPa and 40 percent quality. Heat is currently transferred now to the refrigerant from a source at 35°C until the pressure rises to 400 kPa. Determine;
 - (i) the entropy change of the refrigerant

(5 marks)

(ii) the entropy change of the heat source,

(4 marks)

(iii) the total entropy change for this process.

(3 marks)

- END OF QUESTION -

TERBUKA

FINAL EXAMINATION

SEMESTER/SESSION: SEMESTER 1 / 2020/2021

COURSE NAME: FLUID MECHANICS

PROGRAMME CODE: DAM COURSE CODE: DAM 22003

TABLE 1: PHYSICAL PROPERTIES OF WATER (SI UNITS)

Temperature	Density, ρ (kg/m ³) 999.9	Specific Weight ^h ,	Dynamic Viscosity, μ (N·s/m²)	Viso	Kinematic Viscosity, (m ² /s)		Surface Tension ^e , σ (N/m)		Vapor Pressure, p_v $[N/m^2(abs)]$	
0			1.787 E -	1.787	E - 6	7.56	E - 2	6.105	E + 2	1403
5	1000.0	9 807	1.519 E -	1.519	E - 6	7.49	E-2	8.722	E + 2	1427
10	999.7	9.804	1.307 E -	1.307	E - 6	7.42	E - 2	1.228	E + 3	1447
20	998.2	9.789	1.002 E -	1.004	E - 6	7.28	E-2	2.338	E + 3	1481
30	995.7	9.765	7.975 E -	8.009	E - 7	7.12	E-2	4.243	E + 3	1507
40	992.2	9.731	6.529 E -	6.580	E-7	6.96	E - 2	7.376	E + 3	1526
50	988.1	9.690	5.468 E -	5.534	E-7	6.79	E-2	1.233	E + 4	1541
60	983.2	9.642	4.665 E -	4.745	E - 7	6.62	E-2	1.992	E + 4	1552
70	977.8	9.589	4.042 E -	4.134	E - 7	6.44	E-2	3.116	E + 4	1555
80	971.8	9.530	3.547 E -	3.650	E - 7	6.26	E-2	4.734	E + 4	1555
90	965.3	9.467	3.147 E -	3.260	E-7	6.08	E-2	7.010	E + 4	1550
100	958.4	9.399	2.818 E -	2.940	E-7	5.89	E-2	1.013	E + 5	1543

TERBUKA