

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION (ONLINE) **SEMESTER I SESSION 2020/2021**

COURSE NAME

: ENGINEERING MATHEMATICS II

COURSE CODE

: DAM 21303 / DAE 23403

PROGRAMME CODE

: DAM / DAE

EXAMINATION DATE : JANUARY / FEBRUARY 2021

DURATION

: 3 HOURS

INSTRUCTION

: ANSWER ALL QUESTIONS.

TERBUKA

THIS QUESTION PAPER CONSISTS OF NINE (9) PAGES

CONFIDENTIAL

DAM 21303/ DAE 23403

Q1 (a) Solve the second order differential equation $\frac{d^2y}{dx^2} + 2\frac{dy}{dx} + 10y = 0$ given that when x = 0, y = 2 and $\frac{dy}{dx} = 1$.

(7 marks)

(b) Find the general solution of the second order differential equation $\frac{d^2y}{dx^2} - 2\frac{dy}{dx} + y - e^{2x} + 3$ by using method of variation of parameters

(13 marks)

Q2 (a) Solve the following integral by using integration by parts:

$$\int e^{-3t} \cos 2t \ dt \ .$$

(8 marks)

(b) Evaluate the following integrals.

(i)
$$\int_0^{\sqrt{3}} \frac{x}{\sqrt{4-x^2}} dx.$$

(4 marks)

(ii)
$$\int \frac{x^2 + 1}{\sqrt{x}} + \sec^2 5x \ dx.$$

(2 marks)

(c) Solve the following integral by using integration by partial fractions:

$$\int \frac{x+7}{x^2(x+2)} dx.$$

(6 marks)

- Q3 (a) Figure Q3 (a) shows the region W bounded by curves $y^2 = 10 x$ and $x = (y-2)^2$.
 - (i) Find the coordinates of **A** and **B**.

(5 marks)

(ii) Evaluate the area of the region W.

(5 marks)

CONFIDENTIAL

DAM 21303/ DAE 23403

- (b) Consider region **R** is enclosed by $y = 4 x^2$ and $y = x^2$.
 - (i) Sketch the graph and identify the region \mathbf{R} .

(3 marks)

(ii) Find the volume of the solid generated when the region \mathbf{R} is revolved about y - axis.

(7 marks)

Q4. (a) Given the first order differential equation:

$$\left(y^{2}-x^{2}\right)dy-2xydx=0.$$

(i) Show that the equation is a homogeneous equation

(2 marks)

(ii) Find the general solution of the equation

(8 marks)

(b) Given the first order linear differential equation:

$$x\frac{dy}{dx} + 3y = e^{-2x}.$$

(i) State two reasons why the differential equation is linear.

(2 marks)

(ii) Thus, solve the equation.

(8 marks)

- Q5 (a) As a practical student in IWC company, you have been given a task to remove a heavy metal with its core temperature of $500^{\circ}F$ from a furnace and placed the metal on a table in a room that had a constant temperature of $45^{\circ}F$. One hour after it is removed the core temperature is $150^{\circ}F$. The temperature of the metal must be below $50^{\circ}F$ before you can transfer it to the next section.
 - (i) Given $\frac{dT}{T T_s} = kdt$. Show that $T = T_s = Ae^{-kt}$.

(4 marks)

(ii) By using $T - T_s = Ae^{-kt}$, with $T(0) = 500^{\circ}$ F and $T_s = 45^{\circ}$ F, find the constant A. Hence find T(t).

(4 marks)

CONFIDENTIAL

DAM 21303/ DAE 23403

- (iii) Given the observed temperatures of the metal, given $T(1) = 150^{\circ} F$, find the constant k. (4 marks)
- (iv) Find the time taken for the temperature of the metal to be below 50°F.

 (3 marks)
- (b) The world population growth is described by $y(t) = y_0 e^{k(t-t_0)}$ with t measured in years.
 - (i) If the population increased 2019 by 2.5% from 2018 to 2019, find k. (3 marks)
 - (ii) If the population in $t_0 = 2018$ was 32 million people, find the actual population for 2021 predicted by the given equation. (2 marks)

- END OF QUESTIONS -

SEMESTER / SESSION: I/ 2020/2021

PROGRAMME CODE : DAM / DAE

COURSE NAME: ENGINEERING MATHEMATICS II

COURSE CODE: DAM21303/DAE23403

Figure Q3 (a)

TERBUKA

Lightly to the sear that Malaysia

SEMESTER / SESSION: I/ 2020/2021

PROGRAMME CODE : DAM / DAE

COURSE NAME: ENGINEERING MATHEMATICS II

COURSE CODE: DAM21303/DAE23403

Formula

Table 1: Characteristic Equation and General Solution

	Homogeneous Differential Equation: $ay'' + by' + cy = 0$			
	Characteristics Equation: $am^2 + bm + c = 0$			
	$m = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$			
Case	Roots of Characteristics Equation	General Solution		
1	Real and Distinct: $m_1 \neq m_2$	$y_h(x) = Ae^{m_1 x} + Be^{m_2 x}$		
2	Real and Equal: $m_1 = m_2 = m$	$y_h(x) = (A + Bx)e^{nx}$		
3	Complex Roots: $m = \alpha \pm i\beta$	$y_h(x) = e^{\alpha x} (A\cos\beta x + B\sin\beta x)$		

Table 2: Particular Solution of Nonhomogeneous Equation

$$ay'' + by' + cy = f(x)$$

f(x)	$y_p(x)$
$P_n(x) = A_n x^n + A_{n-1} x^{n-1} + \dots + A_1 x + A_0$	$x^{r}\left(B_{n}x^{n}+B_{n-1}x^{n-1}+\ldots+B_{1}x+B_{0}\right)$
Ce^{ax}	$x^{r}\left(Pe^{ax}\right)$
$C\cos\beta x \text{ or } C\sin\beta x$	$x^r \left(P \cos \beta x + Q \sin \beta x \right)$
$P_n(x)e^{ax}$	$x^{r} (B_{n}x^{n} + B_{n-1}x^{n-1} + \dots + B_{1}x + B_{0})e^{\alpha x}$
$P_n(x) \begin{cases} \cos \beta x \\ \sin \beta x \end{cases} \text{ or }$	$x^{r} \left(B_{n} x^{n} + B_{n-1} x^{n-1} + \dots + B_{1} x + B_{0} \right) \cos \beta x + $ $+ $ $x^{r} \left(B_{n} x^{n} + B_{n-1} x^{n-1} + \dots + B_{1} x + B_{0} \right) \sin \beta x$

Notes: r is the smallest non negative integer to ensure no alike term between $y_p(x)$ and $y_h(x)$.

SEMESTER / SESSION: I/ 2020/2021

PROGRAMME CODE : DAM / DAE

COURSE NAME: ENGINEERING MATHEMATICS II

COURSE CODE: DAM21303/DAE23403

Table 3: Variation of Parameters Method

Homogeneous solution,
$$y_h(x) = Ay_1 + By_2$$

Wronskian function, $W = \begin{vmatrix} y_1 & y_2 \\ y_1' & y_2' \end{vmatrix} = y_1y_2' - y_2y_1'$
 $u_1 = \int \frac{y_2 f(x)}{aW} dx + A$
 $u_2 = \int \frac{y_1 f(x)}{aW} dx + B$

General solution, $y(x) = u_1y_1 + u_2y_2$

Table 4: Trigonometry Identities

$$\sin^2 t + \cos^2 t = 1$$

$$\sin^2 t = \frac{1}{2} (1 - \cos 2t)$$

$$\cos^2 t = \frac{1}{2} (1 + \cos 2t)$$

Table 5: Partial Fraction

$$\frac{a}{(s+b)(s-c)} = \frac{A}{s+b} + \frac{B}{s-c}$$

$$\frac{a}{s(s-b)(s-c)} = \frac{A}{s} + \frac{B}{s-b} + \frac{C}{s-c}$$

$$\frac{a}{(s+b)^2} = \frac{A}{s+b} + \frac{B}{(s+b)^2}$$

$$\frac{a}{(s+b)(s^2+c)} - \frac{A}{(s+b)} + \frac{Bs+C}{(s^2+c)}$$

SEMESTER / SESSION: I/ 2020/2021

PROGRAMME CODE : DAM / DAE

COURSE NAME: ENGINEERING MATHEMATICS II

COURSE CODE: DAM21303/ DAE23403

Table 6: Integration and Differentiation

Integration	Differentiation
$\int x^n dx = \frac{x^{n+1}}{n+1} + C$	$\frac{d}{dx}x^n = nx^{n-1}$
$\int \frac{1}{x} dx = \ln x + C$	$\frac{d}{dx}\ln x = \frac{1}{x}$
$\int \frac{1}{a - bx} dx = -\frac{1}{b} \ln a - bx + C$	$\frac{d}{dx}\ln\left(ax+b\right) - \frac{a}{ax+b}$
$\int e^{ax} dx = \frac{1}{a} e^{ax} + C$	$\frac{d}{dx}e^{ax} = ae^{ax}n$
$\int e^{ax} dx = \frac{1}{a} e^{ax} + C$ $\int \sin ax dx = -\frac{1}{a} \cos ax + C$	$\frac{d}{dx}\sin ax = a\cos ax$
$\int \cos ax dx - \frac{1}{a} \sin ax + C$	$\frac{d}{dx}\cos ax = -a\sin ax$
$\int \sec^2 x dx = \tan x + C$	$\frac{d}{dx}\tan x = \sec^2 x$
$\int \csc^2 x dx = -\cot x + C$	$\frac{d}{dx}\cot x\csc^2 x$
$\int u \ dv = uv - \int v du$	$\frac{d}{ds}(uv) = u\frac{dv}{ds} + v\frac{du}{ds}$
$\int_{a}^{b} f(x)dx = F(b) - F(a)$	$\frac{d}{ds}\left(\frac{u}{v}\right) = \frac{v\frac{du}{ds} - u\frac{dv}{ds}}{v^2}$

SEMESTER / SESSION: I/ 2020/2021

PROGRAMME CODE: DAM / DAE

COURSE NAME: ENGINEERING MATHEMATICS II

COURSE CODE: DAM21303/DAE23403

Area of Region

$$A = \int_{a}^{b} [f(x) - g(x)] dx \qquad \text{or} \qquad A = \int_{a}^{d} [w(y) - v(y)] dy$$

$$A = \int_{c}^{d} \left[w(y) - v(y) \right] dy$$

Volume Cylindrical Shells

$$V = \int_{a}^{b} 2\pi x \ f(x) \ dx$$

$$V = \int_{a}^{b} 2\pi x f(x) dx \qquad \text{or} \qquad V = \int_{a}^{d} 2\pi y f(y) dy$$

$$L = \int_{a}^{b} \sqrt{1 + \left(\frac{dy}{dx}\right)^{2}} dx \quad \text{or} \quad L = \int_{c}^{d} \sqrt{1 + \left(\frac{dx}{dy}\right)^{2}} dy$$

$$\int_{a}^{b} f(x) dx \approx \frac{h}{3} \left[\left(f(a) + f(b) \right) + 4 \sum_{i=1}^{n-1} f(a+ih) + 2 \sum_{i=2}^{n-2} f(a+ih) \right]; \quad n = \frac{b-a}{h}$$

$$\int_{a}^{b} f(x) dx \approx \frac{h}{2} \left[f(a) + f(b) + 2 \sum_{i=1}^{n-1} f(a+ih) \right]; \quad n = \frac{b-a}{h}$$