

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION (ONLINE) SEMESTER I SESSION 2020/2021

COURSE NAME

BASIC ELECTRIC AND

ELECTRONIC

COURSE CODE

: DAM 13503 / DAM 21403

PROGRAMME CODE

: DAM

EXAMINATION DATE

: JANUARY / FEBRUARY 2021

DURATION

: 3 HOURS

INSTRUCTION

: ANSWER FIVE (5) QUESTIONS

ONLY

OPEN BOOK EXAMINATION

THIS QUESTION PAPER CONSISTS OF EIGHT (8) PAGES BUKA

CONFIDENTIAL

of influency men. The service of influency men. The service of the

Q1 Referring to Figure Q1;

(a) Find total resistance R_T

(4 marks)

- (b) Predict the voltage drop across resistance R_1 (V_{RI}), resistance R_2 , (V_{R2}), resistance R_3 (V_{R3}) and resistance R_4 (V_{R4}). (8 marks)
- (c) Solve the current flow through resistance R_1 (I_{R1}), resistance R_2 (I_{R2}), resistance R_3 (I_{R3}) and resistance R_4 (I_{R4}) (8 marks)
- Q2 (a) According to the Kirchhoff's Current I aw, the algebraic sum of all currents entering and exiting a node must equal zero. If I_x in **Figure Q2(a)** is corresponding to your last digit matrix number, calculate the currents I_1 , I_2 , I_3 and I_y in the circuit below. (For example, If your number is AA200620, your I_x value is 0 Ampere).

(4 marks)

(b) As a reverse engineer in automotive manufacturing, you have to analyse a drive train controller circuit with some unknown variables, as shown in **Figure Q2(b)**. If R_x is corresponding to your last digit matrix number, calculate the V_x , V_T , V_4 , and R_4 . (For example, If your number is AA200620, your R_x value is 0 Ω).

(4 marks)

(c) Since you were graduated from Universiti Tun Hussein Onn Malaysia (UTHM), your colleague placed his trust on you to analyse flow of current in a circuit, as shown in **Figure Q2(c)**. If V_x is corresponding to your last digit matrix number, determine the currents I_1 , I_2 , and I_3 in the circuit below. Please sketch the actual current flow direction for each loop. (For example, If your matrix number is AA200610, your V_x value is 0 V)

(12 marks)

DAM 13503 / DAM 21403

Q3 (a) Describe what is magnetomotive force and compare it with electromotive force. Use diagrams to explain your answer.

(6 marks)

- (b) A steel ring of 25 cm mean diameter and of circular section 3 cm in diameter has an air gap of 15 mm length. It is wound uniformly with 700 turns of wire carrying a current of 2 Ampere. Calculate
 - (i) Magnetomotive force, mmf

(2 marks)

(ii) Magnetic flux

(3 marks)

(iii) Relative permeability of steel ring

(3 marks)

(c) Explain **THREE(3)** differences between DC motor and generator. You may use diagrams in your answer.

(6 marks)

Q4 (a) A filter circuit consists of an inductor and two capacitors as in Figure Q4(a). Its purpose is to smooth the power-supply voltages so that a pure direct current is delivered to the load. If the reactance of C_l is 175Ω at a frequency of 60 Hz, determine its capacitance.

(10 marks)

(b) Figure Q4(a) clearly shows that a filter circuit is needed after the rectifier circuit. A filter circuit that converts the AC power-line voltage to the required DC value is called load. Describe in detail step by step the action of filter circuit on the output of the circuit.

(10 marks)

Q5 (a) A series-parallel AC circuit has two branches across the 60-Hz 240-V power line as shown in **Figure Q5(a)**. Find I_1 , I_2 , I_3 , V_1 , V_2 and V_3 . (Double-ended arrows are used to indicate direction for AC current).

(10 marks)

(b) A 50Ω electric iron and a 120 Ω lamp are connected in parallel across a 240-V 60-Hz AC line, as shown in **Figure Q5(b)**

(i) Calculate the total current

(3 marks)

(ii) Calculate the total resistance

(1 marks)

(iii) Find the total power drawn by the circuit

(2 marks)

(iv) Draw the phase diagram

(4 marks)

- Q6 (a) A transformer consists of two windings electrically insulated from each other and wound upon a common core. Briefly explain these two windings.

 (4 marks)
 - (b) A power transformer in **Figure Q6(b)** is used to couple electric energy from a power-supply line to two separate secondary windings, each designed for a different voltage output. The primary of the transformer is connected to a 120V source of supply and has 50 turns. Find the number of turns on each secondary.

(6 marks)

- (c) A step down transformer with a turns ratio of 25000:500 has its primary connected to a 11kV transmission line. If the secondary is connected to a 20Ω load. Determine;
 - (i) The secondary voltage, V_{s}

(4 marks)

(ii) The secondary current, I_s

(3 marks)

(iii) The secondary power, P_s

(3 marks)

- END OF QUESTIONS -

TERBUKA
CONFIDENTIAL

FINAL EXAMINATION

SEMESTER / SESSION

: SEMESTER 1 2020 /2021

PROGRAMME CODE : DAM

COURSE NAME

: BASIC ELECTRIC & ELECTRONIC

COURSE CODE

: DAM 13503 /DAM 21403

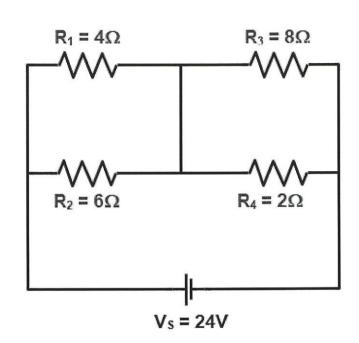
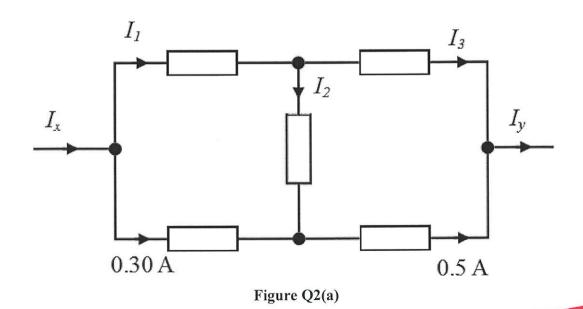



Figure Q1

FINAL EXAMINATION

SEMESTER / SESSION

SEMESTER 1 2020 /2021

PROGRAMME CODE : DAM

COURSE NAME

BASIC ELECTRIC &

FLECTRONIC

COURSE CODE

: DAM 13503 /DAM 21403

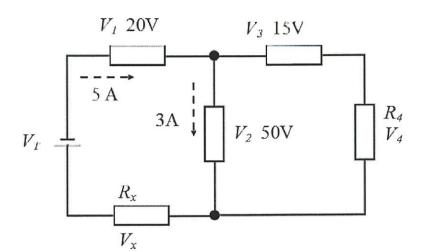


Figure Q2(b)

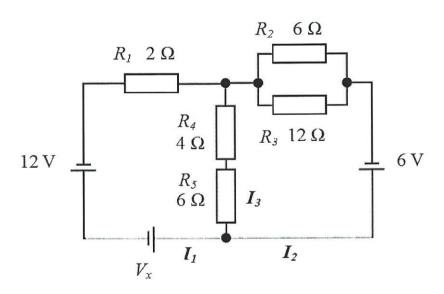


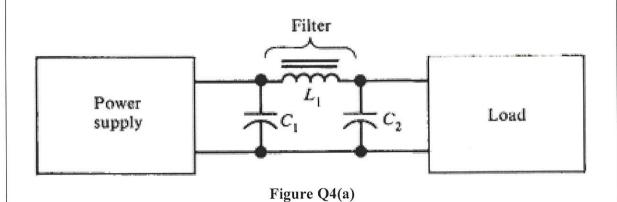
Figure Q2(c)

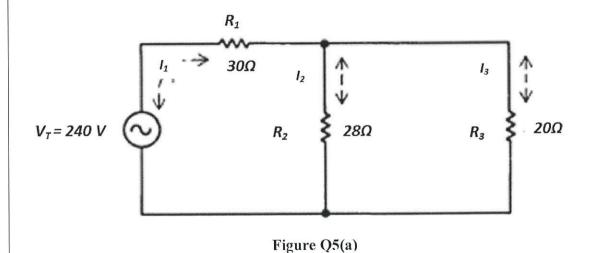
FINAL EXAMINATION

SEMESTER / SESSION

: SEMESTER 1 2020 /2021 PROGRAMME CODE : DAM

COURSE NAME


: BASIC ELECTRIC &


ELECTRONIC

COURSE CODE

· DAM 13503

/DAM 21403

1 1 1 a

FINAL EXAMINATION

: SEMESTER 1 2020 /2021 PROGRAMME CODE : DAM SEMESTER / SESSION

: DAM 13503 / DAM COURSE NAME BASIC ELECTRIC & COURSE CODE 21403 ELECTRONIC

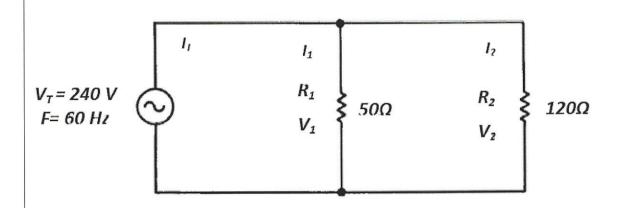


Figure Q5(b)

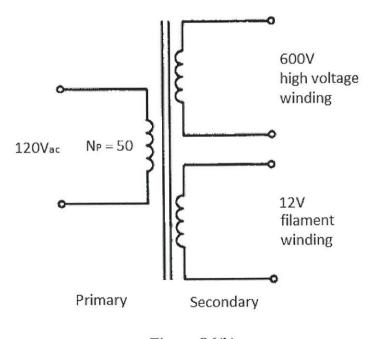


Figure Q6(b)

