

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION (ONLINE) SEMESTER I SESSION 2020/2021

COURSE NAME

: THERMODYNAMICS

COURSE CODE

: BWC 20303

PROGRAMME CODE

: BWC

EXAMINATION DATE

: JANUARY/FEBRUARY 2021

DURATION

: 3 HOURS

INSTRUCTION

ANSWER ALL QUESTIONS

OPEN BOOK EXAMINATION

THIS QUESTION PAPER CONSISTS OF FOUR (4) PAGES

- Q1 (a) The specific volume of 8 kg of water vapor at 1.5 x 10⁵ N/m², 440 °C is 0.4320 m³/kg. Molecular weight of water vapor is 18.02 g/mol. Determine,
 - (i) the volume in m³ of the water vapor

(4 marks)

(ii) the amount of water vapor present in moles

(4 marks)

(iii) the number of molecules

(4 marks)

(b) A vertical piston-cylinder assembly containing a gas is placed on a hot plate as **Figure Q1(b)**. The piston initially rests on the stops. With the onset of heating, the gas pressure increases. Calculate the pressure when the piston start rising.

(8 marks)

Figure Q1(b)

A gas in a piston cylinder assembly undergoes an expansion process for which the relationship between P-pressure and V=volume is given by

$PV^n = constant$

- (a) The final pressure is $2x10^5$ N/m², the initial volume is 0.1 m³, and the final volume is 0.04 m³. Determine the initial pressure, and the work for the process, in kJ, if
 - (i) n-0,

(8 marks)

(ii) n-1.0

(8 marks)

(b) For each case, justify whether the work is done ON or BY the system.

(4 marks)

Q3 (a) Piston-cylinder assembly undergoes 2 processes, A and B, between the same end states, 1 and 2, where $P_1 = 2 \times 10^5 \text{ N/m}^2$, $V_1 = 2\text{m}^3$, $U_1 = 800 \text{ kJ}$, $P_2 = 20 \times 10^5 \text{ N/m}^2$, $V_2 = 0.2 \text{ m}^3$, $U_2 - 900 \text{ kJ}$.

Process A: constant-volume process from state 1 to a pressure of $20 \times 10^5 \text{ N/m}^2$, followed by constant-pressure process to state ?

Process B: process from 1 to 2 during which PV= constant

Kinetic and potential effects are ignored. For each process, A and B.

(i) sketch the process on P-V coordinates

(4 marks)

(ii) evaluate work (kJ)

(6 marks)

(iii) evaluate heat transfer (kJ)

(2 marks)

(b) Carbon monoxide gas (CO) contained within a piston-cylinder assembly undergoes three processes in series.

Process 1 2: Constant pressure expansion at 5 N/m² from $V_1 = 0.2 \text{ m}^3$ to $V_2 - 1 \text{ m}^3$.

Process 2-3: Constant volume cooling from state 2 to state 3 where $P_3 - 1 \text{ N/m}^2$.

Process 3-1: Compression from state 3 to the initial state during which the pressure-volume relationship is PV = constant.

Sketch the processes in series on P-V coordinates and evaluate the work for each process, in kJ.

(8 marks)

- Q4 (a) Air enters a one-inlet, one-exit control volume at 6×10^5 N/m², 500 K, and 30 m/s through a flow area of 28 cm². At the exit, the pressure is 3×10^5 N/m², the temperature is 456.5 K, and the velocity is 300 m/s. The air behaves as an ideal gas. For steady state operation, determine:
 - (i) the mass flow rate, in kg/s.

(6 marks)

(ii) the exit flow area, in cm².

(4 marks)

- (b) Liquid water flows isothermally at 20 °C through a one-inlet, one-exit duct operating at steady state. The duct's inlet and exit diameters are 0.02 m and 0.04 m, respectively. At the inlet, the velocity is 40 m/s and pressure is 1 bar. At the exit, determine:
 - (i) the mass flow rate, in kg/s,

(6 marks

(ii) velocity, in m/s.

(4 marks)

CONFIDENTIAL

BWC 20303

Q5 A power cycle receives energy Q_H by heat transfer from a hot reservoir at $T_H = 1200$ K and rejects energy Q_C by heat transfer to a cold reservoir at $T_C = 400$ K. For each of the following cases, determine whether the cycle operates reversibly, operates irreversibly, or is impossible.

(a)
$$Q_H = 900 \text{ kJ}, W_{\text{cycle}} = 450 \text{ kJ}$$

(5 marks)

(b)
$$Q_H - 900 \text{ kJ}, Q_C - 300 \text{ kJ}$$

(5 marks)

(c)
$$W_{\text{cycle}} = 600 \text{ kJ}, Q_{\text{c}} = 400 \text{ kJ}$$

(5 marks)

(d)
$$\eta = 70\%$$

(5 marks)

END OF QUESTIONS —

