

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION (TAKE HOME) SEMESTER I SESSION 2020/2021

COURSE NAME

SOLID MECHANICS

COURSE CODE

: BNJ 20903

PROGRAMME CODE :

BNG/BNL

EXAMINATION DATE :

JAN / FEB 2021

DURATION

3 HOURS

INSTRUCTION

ANSWER FIVE (5) QUESTIONS

ONLY

TERBUKA

THIS QUESTION PAPER CONSISTS OF SEVEN (7) PAGES

Q1	(a)	The Fi	The Figure Q1 (a) shows the beam is subjected to a moment of 3 kN.m.		
		(i)	Calculate the centroid and moment of inertia of cross-section of the		
		(ii)	Calculate the maximum tensile and compressive stress.	(4 marks)	
	(b)	The Figure Q1 (b) shows the compound beam is fixed at A and supported by a roller at B. The beam is rectangular cross-section 100 mm width x 200 mm length.			
		(i)		(2 marks)	
		(ii)		(3 marks)	
		(iii)			
		(iv)		(3 marks)	
				(2 marks)	
Q2	Rod AB consists of two cylindrical portions AC and BC, each with a cross-sectional ar 1750 mm ² . Portion AC is made of a mild steel with $E = 200$ GPa and $\sigma_y = 250$ MPa, and po BC is made of a high-strength steel with $E = 200$ GPa and $\sigma_y = 345$ MPa. A load P is ap at C as shown in Figure Q2 . If P is gradually increased from zero until the deflection of C reaches a maximum value $\delta_m = 0.3$ mm and then decreased back to zero.				
	(a)	Discov	ver the maximum value of P.	(8 marks)	
	(b)	Evalua	Evaluate the maximum stress in each portion of the rod.		
	(c)	Calculate deflection of C after the load removed.		(6 marks)	
				(6 marks)	
Q3	The Figure Q3 shows the splined ends and gears attached to the A99 are subjected to the torques. The shaft has a diameter of 40 mm. The Determine:				
	(a)	The an	gular velocity of the shaft, ω.	(3 marks)	
	(b)	The in	iternal torque exerted on gears A (T_{AC}) , $C(T_{CD})$ and D (T_{DB}) .		
		The in	ternal torque diagram.	(6 marks)	
		The ang	agle of twist.	(3 marks)	
				(8 marks)	
			TERBUI	(A)	

CONFIDENTIAL

- BNJ 20903 An element of material subjected to plane strain as shown in Figure Q4 (a) has strains (a) as follows: $\epsilon_x = -400 \times 10^{-6}$, $\epsilon_y = 0$ and $\gamma_{xy} = 150 \times 10^{-6}$. Determine (i) The equivalent state of strain on an element at the same point oriented 30° clockwise with respect to the original element. $(\epsilon_{x'}, \epsilon_{y'}, \gamma_{x'y'})$ (3 marks)
 - (ii) Sketch the results on this element.

(3 marks)

- (b) Determine the equivalent state of stress in **Figure Q4 (b)** by using Mohr's Circle.
 - (i) Identify of the Mohr's circle. Determine σ_{avg} , point A, point C and radius of the circle.

(6 marks)

(ii) Determine in plane principle stress, σ_1 , σ_2 .

(2 marks)

(iii) Determine orientation of the principle plane, 0_{pl} .

(2 marks)

Determine maximum in-plane shear stress, $\tau_{\text{max in-plane}}$ (1V)

(2 marks)

(v) Determine of the plane of maximum in-plane shear stress, θ_s

(2 marks)

- The **Figure Q5** (a) shows the composite beam consists of a wood core and two plates **Q5** (a) of steel. If the allowable bending stress for the wood is $(\sigma allow)w = 20$ MPa, and for the steel (σ allow)st = 130 MPa. (Ew = 11 GPa, Est = 200 GPa)
 - (i) Explain the centroid, \bar{y} and moment of inertia, I of the transformed section. (4 marks)
 - Determine the maximum bending stress of the steel and the wood, σ_{steel} , σ_{wood} . (ii) (4 marks)
 - (b) The Figure Q5 (b) shows the tube is made copper and has an outer diameter of 35 mm and a wall thickness of 7 mm. Determine the eccentric load P that it can support without failure using Euler's Formula and Secant Formula. The tube is pin supported at its ends. $E_{copper} = 120 \text{ GPa}, \sigma_{max} = 750 \text{ MPa}.$

(12 marks)

- **Q6** The **Figure Q6** shows the pipe assembly is fixed at A.
 - (a) Shows the internal loadings.

(4 marks)

(b) Construct the bending strain energy.

(10 marks)

(c) Determine the external work by external force P = 20 kN.

(4 marks)

(d) Determine the conservation energy.

(2 marks)

-END OF QUESTIONS-

FINAL EXAMINATION

SEMESTER / SESSION : SEM I / 2020/2021 COURSE NAME

SOLID MECHANICS

PROGRAMME CODE: BNG/BNL

COURSE CODE

: BNJ 20903

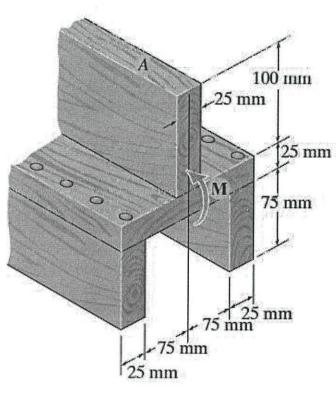


Figure Q1 (a)

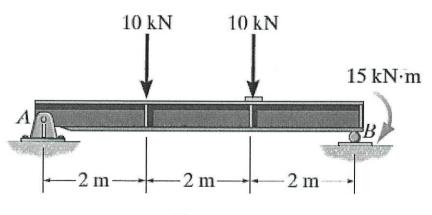


Figure Q1 (b)

TERBUKA

FINAL EXAMINATION

SEMESTER / SESSION : SFM I / 2020/2021 **COURSE NAME**

: SOLID MECHANICS

PROGRAMME CODE: BNG/BNL

COURSE CODE : BNJ 20903

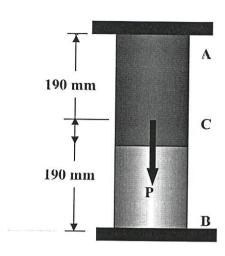


Figure Q2

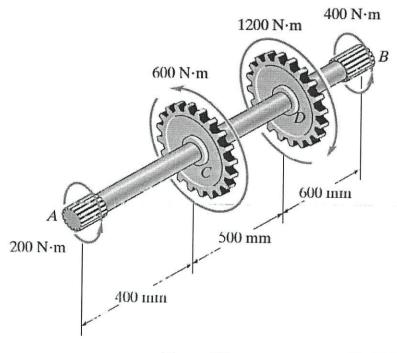
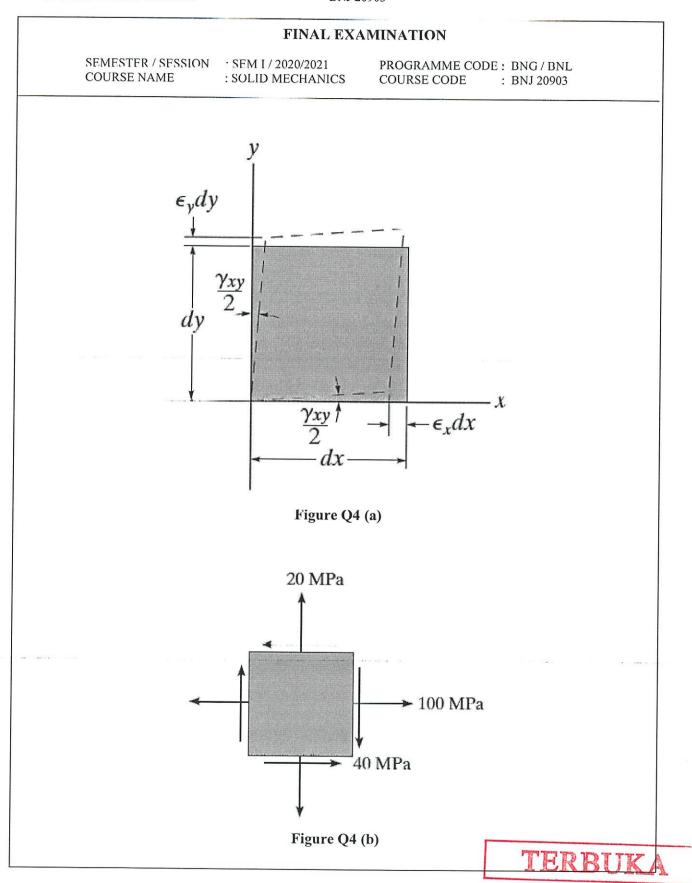
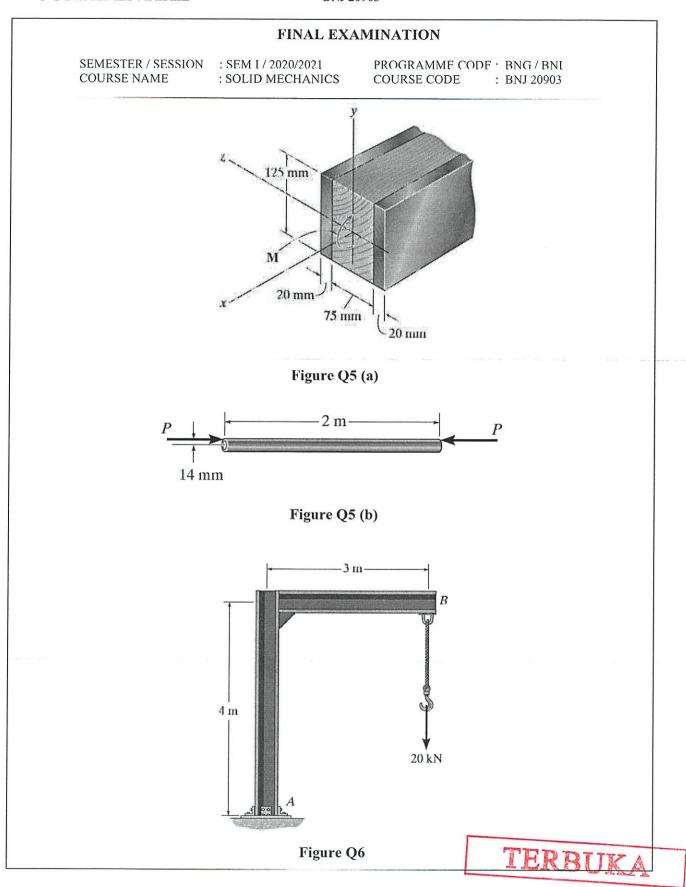




Figure Q3

a un jen uskaj kojuku čladi) znjestoj i un naskejn Ort kladavijs

