

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION (ONLINE) SEMESTER I **SESSION 2020/2021**

COURSE NAME

ELECTRICAL AND ELECTRONIC

TECHNOLOGY

COURSE CODE

BDU 10803

PROGRAMME CODE :

BDC/BDM

EXAMINATION DATE

JANUARY/FEBRUARY 2021

DURATION

3 HOURS :

:

INSTRUCTION

SECTION A: ANSWER ALL QUESTIONS.

SECTION B: ANSWER ALL QUESTIONS.

SECTION C: ANSWER ONLY TWO (2)

QUESTIONS.

THIS QUESTION PAPER CONSISTS OF TWELVE (12) PAGES UKA

CONFIDENTIAL

BDU 10803

SECTION A: Answer all questions. Each question carries 1 mark.

- 1. A material in which there are no free charge carries is known as:
 - a. a conductor
 - b. an insulator
 - c a semiconductor
 - d. an inductor
- 2. Conventional current flow is:
 - a always from negative to positive
 - b. in the same direction as electron movement
 - c in the opposite direction of electron movement
 - d. not related to electron movement
- 3. The correct symbol and unit for electric charge:
 - a. Symbol: Q, Unit: C
 - b Symbol: C, Unit: F
 - c. Symbol: C, Unit: V
 - d. Symbol: C, Unit: Q
- 4. There are five currents that flow in and out of node A. If the amount of currents I_1 , I_2 , and I_3 that flow out from the node are 6 A, 8 A and 12 A, respectively; and the amount that enters the node is $I_4 = 15$ A, the unknown current, I_5 , will be:
 - a. 11 A flowing towards the node
 - b. 17 A flowing away from the node
 - c. 41 A flowing out from the node
 - d. 26 A flowing towards the node
- 5. A 5-A current charging a dielectric material will not accumulate a charge after 10 s.
 - a. The above statement is true
 - b. The above statement is true false
- 6. An aircraft cabin has 110 passenger reading lamps each rated at 10 W, 28 V. What is the maximum load current imposed by these lamps?
 - a 25.5 A
 - b. 39.3 A
 - c. 308 A
 - d. 0.36 A
- 7. A network has 12 branches and 8 independent loops. How many nodes are there in the network?
 - a. 19
 - b. 17
 - c. 5
 - d. 4

BDU 10803

- 8. An AC waveform in an aircraft has a period of 4ms. Which one of the following gives its frequency?
 - a. 25 Hz
 - b. 250 Hz
 - c. 4 kHz
 - d 100 Hz
- 9. When the AC voltage across a capacitor is kept constant and the frequency is increased, the current through the capacitor will:
 - a increase
 - b be zero
 - e decrease
 - d. remain the same
- 10. In an electrical AC circuit, a capacitor will cause the
 - a. voltage to lag the current by 90°
 - b. voltage to lag the current by 180°
 - c. voltage to lead the current by 90°
 - d voltage to lead the current by 180°
- 11. A logic 1 is present at the output of a two input NOR gate. Which one of the following is true?
 - a. both of its inputs must be at logic 1
 - b. both of its inputs must be at logic 0
 - c. one of more of its inputs must be at logic 1
- 12. The function of a NOT logic gate within a circuit is to:
 - a. ensure the input signal is DC only
 - b. ensure the input signal is AC only
 - c. invert the input signal such that the output is always of the opposite state
 - d. ensure the output signal is of the same state as the input signal
- 13. There is a force of attraction between two current-carrying conductors when the current in them is:
 - a. in opposite directions
 - b. in the same direction
 - c. of different magnitude
 - d. of the same magnitude
- 14. The capacitance of a capacitor is the ratio of:
 - a. charge to p.d. between plates
 - b. p.d between plates to the plate spacing
 - c p.d. between plates to thickness of dielectric
 - d. p.d. between plates to charge

BDU 10803

- 15. The current through a resistor in a linear network is 2 A when the input source voltage is 10 V. If the voltage is reduced to 1 V and the polarity is reversed, the current through the branch is:
 - a. -2 A
 - b. -0.2 A
 - c. 0.2 A
 - d. 20 A
- 16. The source is supplying the maximum power to the load when the load resistance is not equal to the source resistance.
 - a. The above statement is true
 - b The above statement is true false
- 17. The Norton resistance and the Thevenin resistance are similar.
 - a. The above statement is true
 - b. The above statement is true false
- 18. A combination of inductors in parallel is similar to resistors in parallel.
 - a. The above statement is true
 - b. The above statement is true false
- 19. A 5 H inductor changes its current by 3 A in 0.2 s. The voltage produced at the terminals of the inductor is:
 - a. 3 V
 - b. 8.888 V
 - c. 75 V
 - d. 1.2 V
- 20. Which of the following is not a right way to express the sinusoid A $\cos \omega t$
 - a. A cos $2\pi f t$
 - b. A cos $\omega(t-T)$
 - c. A $cos(2\pi t/T)$
 - d. A $\sin (\omega t 90^\circ)$

ables

SECTION B: Answer all questions.

Figure Q2(a) shows a circuit that consists of 4 resistors is connected to 24 V voltage Q1 (a) source and 4 A current source. Examine the circuit and determine the Thevenin equivalent at terminals a-b. Sketch the equivalent circuit to support your answer.

(10 marks)

Principle of superposition is known as one of the methods to analyze a circuit. (b) Examine the circuit shown in Figure Q2(b) using superposition principle to obtain the value of I_0 . Justify your work by providing appropriate sketches on the circuit.

(10 marks)

Q2The gate network shown in Figure Q5(a) has three inputs, A, B and C. (a)

> Find an expression for the output Z (i)

Consider the rules in Boolean Algebra and suggest a minimize expression for (ii) this network.

(9 marks)

- The truth table given in Table Q5(b) shows the functions F(A,B,C) and G(A,B,C). (b) Examine the given values and then:
 - Construct a logic expression corresponding to the functions F(A,B,C) (i)
 - Find the minimum expression for F(A,B,C)(ii)
 - (iii) Construct F(A,B,C) with logic gates

(11 marks)

TERBUKA

SECTION C: Answer only two (2) questions.

- Q3 (a) The resistance of an electrical conductor is contributed by a several factors.
 - (i) Explain the effect on resistance if the cross-sectional area of a conductor is doubled.
 - (ii) If a 5 m length of wire installed in an aircraft has a resistance of 600 olun, determine the resistance of the same wire when the length is 9 m.

(5 marks)

- (b) Examine the circuit given in Figure Q3(b). The circuit is designed with $V_1 = 20 V$, $V_2 = 6 V$, $V_6 = 12 V$, and $V_8 = 10 V$ and the rest of the branch voltages are not specified.
 - (i) Identify the number of nodes that can be found in the circuit
 - (ii) Find the unknown branch voltages

(8 marks)

(c) Consider the circuit shown in **Figure Q3(c)**. Rearrange the circuit and determine the equivalent resistance, R_{ab}

(7 marks)

Q4 (a) A circuit with multiple capacitors can be reduced to a single capacitor. Examine the circuit shown in Figure Q4(a) and find the equivalent capacitance. Sketch the equivalent circuit in every step of your work to support your answer.

(8 marks)

- (b) A coil that has negligible resistance and inductance on 700 mH is connected in series with a 100 Ω resistor to a 250 V, 40 Hz supply. Draw the circuit with appropriate labels and then calculate:
 - (i) the inductive reactance of the coil
 - (ii) the impedance of the circuit
 - (iii) the current in the circuit
 - (iv) the p.d. across each component
 - (v) the circuit phase angle

(12 marks)

BDU 10803

Q5 (a) A source-free RC circuit is given in Figure Q5(a). Given:

$$v = 10e^{-4t}$$
 V and $i = 0.2 e^{-4t}$ A, $t > 0$

Examine the given values, then:

- (i) Find the values of R and C in the circuit
- (11) Determine the time constant
- (iii) Determine the initial energy in the capacitor

(8 marks)

(b) A switch shown in Figure Q5(b) is used to enable the door warning indicator in an aircraft. If the switch has been closed for a long time and it only opens at t = 0, find v_o when $t \ge 0$.

(6 marks)

(c) Differentiate between the brushed and brushless DC motors based on the following characteristics: efficiency, maintenance, and noise generation.

(6 marks)

- END OF QUESTIONS -

SEMESTER / SESSION : SEM I / 2020/2021 COURSE NAME: ELECTRICAL AND ELECTRONIC

TECINOLOGY

PROGRAMME CODE: BDC/BDM COURSE CODE: BDU10803

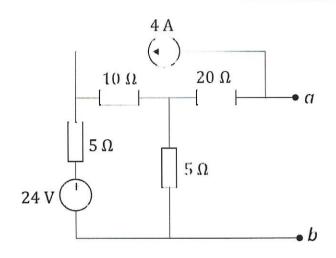


Figure Q1(a)

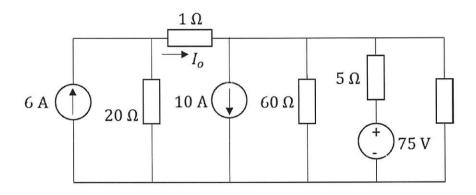
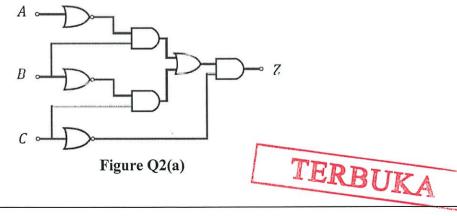



Figure Q1(b)

SEMESTER / SESSION : SEM I / 2020/2021 COURSE NAME: ELECTRICAL AND ELECTRONIC PROGRAMME CODE: BDC/BDM COURSE CODE: BDU10803

TECHNOLOGY

A	В	C	F(A, B, C)	G (A, B, C)
0	0	0	1	0
0	0	L	0	Q
0	1	0	0	0
()	1	1	0	1
1	0	0	i	0
1	0	1	1	1
1	1	0	Q	1
1	1	1	1	1

Table Q2(b)

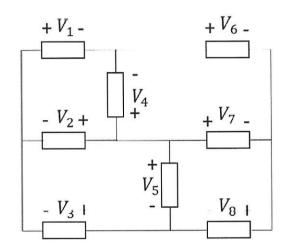


Figure Q3(b)

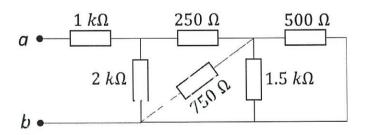
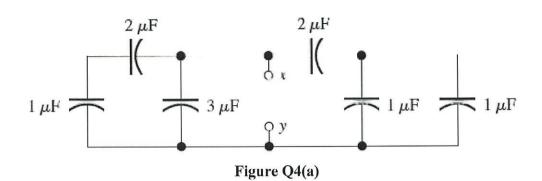
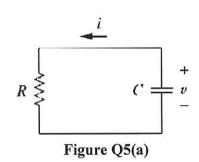




Figure Q3(c)

SEMESTER / SESSION : SEM I / 2020/2021 COURSE NAME: ELECTRICAL AND ELECTRONIC TECHNOLOGY PROGRAMME CODE: BDC/BDM COURSE CODE: BDU10803

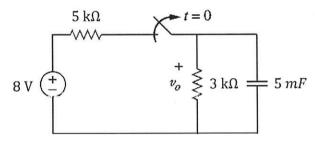
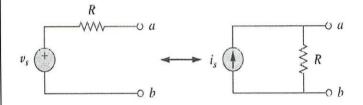


Figure Q5(b)

TERBUKA


BDU 10803

FINAL EXAMINATION

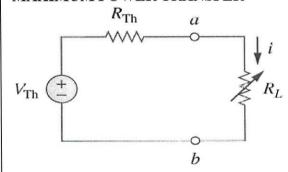
SEMESTER / SESSION : SEM I / 2020/2021 COURSE NAME: ELECTRICAL AND ELECTRONIC TECHNOLOGY

PROGRAMME CODE: BDC/BDM COURSE CODE: BDU10803

SOURCE TRANSFORMATION

$$V_s = I_s R$$

THEVENIN AND NORTON EQUIVALENT CIRCUIT


$$I_N = \frac{V_{TH}}{R_{TH}}$$

$$P = i^{2}R_{L} = \left(\frac{V_{TH}}{R_{TH} + R_{L}}\right)^{2}R_{L} \qquad \text{When } R_{L} \neq R_{TH}$$

$$P_{\text{max}} = \frac{V_{TH}^{2}}{4R_{TH}} \qquad \text{When } R_{L} = R_{TH}$$

$$P_{\text{max}} = \frac{V_{TH}^2}{4R_{TH}}$$

MAXIMUM POWER TRANSFER

$$\boxed{P - i^2 R_t = \left(\frac{V_{\text{TH}}}{R_{\text{TH}} + R_{\text{L}}}\right)^2 R_t}$$

SEMESTER / SESSION : SEM I / 2020/2021 COURSE NAME: ELECTRICAL AND ELECTRONIC **TECHNOLOGY**

PROGRAMME CODE: BDC/BDM

COURSE CODE: BDU10803

CAPACITOR AND INDUCTOR

$$C' = \frac{\varepsilon A}{d}$$

$$v(t) - \frac{1}{C} \int_{-\infty}^{t} i(t)dt + v(t_0)$$

$$i = C \frac{dv}{dt}$$

$$L = \frac{N^2 \mu A}{l}$$

$$v = L \frac{di}{dt}$$

$$v = L \frac{di}{dt}$$

$$v = \frac{1}{L} L i^2$$

$$t - RC$$

$$\tau = \frac{L}{R}$$

$$v(t+T) = v(t)$$

$$f = \frac{1}{T}$$

$$z = x + jy = r \angle \phi = r(\cos \phi + j \sin \phi)$$

ALTERNATING CURRENT POWER CALCULATION

$$P(t) = v(t)i(t) \qquad \text{Instantaneous power}$$

$$P = \frac{1}{2} \operatorname{Re}[VI^*] = \frac{1}{2} V_m I_m \cos(\theta_v - \theta_i) \qquad \text{Average power}$$

$$i_{RMS} = \sqrt{\frac{1}{T}} \int_0^T i^2 dt$$

$$P_{RMS} - I_{RMS}^2 R - \frac{V_{RMS}^2}{R}$$