

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION (TAKE HOME) SEMESTER II SESSION 2019/2020

COURSE NAME	•	SIGNALS AND SYSTEMS

COURSE CODE : BEJ 20203

PROGRAMME : BEJ

EXAMINATION DATE : JULY 2020

DURATION : 3 HOURS

:

INSTRUCTION

CLOSED BOOK EXAMINATION

ANSWER ALL QUESTIONS

THIS QUESTION PAPER CONSISTS OF SIXTEEN (16) PAGES

CONFIDENTIAL

Let x(t) and y(t) given in Figure Q1(a) and Figure Q1(b), respectively. Q1. (a) Sketch the following signals.

- x(t+1)y(t-2)(i) (3 marks) x(4-t)y(2t)(ii) (3 marks)
- (b) Sketch the following signals

(i)
$$x(t) = -u(t+3) + 2u(t+1) - 2u(t-1) + u(t-3)$$

(ii) $x(t) = r(t+2) - r(t+1) - r(t-1) + r(t-2)$ (3 marks)

ii)
$$x(t) = r(t+2) - r(t+1) - r(t-1) + r(t-2)$$

(3 marks)

(6 marks)

- Figure Q1(c) shows x(t) that may be viewed as the superposition of THREE (3) (c) signals. Starting with the rectangular pulse g(t) of Figure Q1(d).
 - (i) Construct THREE (3) signals for these superposition using transformation of g(t).
 - (ii) Express x(t) in terms of g(t). (2 marks)

Q2. Test the stability of the following continuous-time systems. (a)

(i)	$h_1(t) = e^t u(t)$	
		(3 marks)
(ii)	$h_2(t) = e^{-2t}u(t+4)$	
		(3 marks)

- An LTI system with an input response, x(t) resulting a system response, y(t) as (b) per shown in Figure Q2(b)(i). Given the input response, x(t) as in Figure Q2(b)(ii).
 - (i) Find the convolution integral of the LTI system if the h(t) is given as in Figure Q2(b)(iii). Hint: Do not have to sketch the y(t) graph for your answer.

(12 marks)

(ii) Given the signal $h_1(t) = u(t+1) - u(t)$. By referring to the Figure Q2(b)(i), find the signal of $h_2(t)$.

(2 marks)

CONFIDENTIAL

TERBUKA

BEJ 20203

Q3 (a)

A voltage source $v_{in}(t)$ is expressed in complex exponential Fourier series and is given by:

$$v_{in}(t) = 10 + \sum_{\substack{n=3\\n\neq 0}}^{3} j \frac{1}{n\pi} e^{(jn\pi(50k)t)}$$

(i) Draw the magnitude and phase spectrum of $v_{in}(t)$.

(5 marks)

(ii) Express the output of the system, $v_{out}(t)$ if signal $v_{in}(t)$ in Q3(a)(i) becomes the input to an LTI system as shown in Figure Q3(a).

(8 marks)

(b) Given signal $v_s(t)$ become the input to the circuit as shown in Figure Q3(b).

$$v_s(t) = 2 + \frac{1}{\pi} \sum_{n=1}^{\infty} \frac{1}{\pi} \sin(n\pi t)$$

Determine the current of the system i(t).

(7 marks)

Q4 (a) Figure Q4(a) shows two systems which are interconnected in parallel. Determine the Fourier transform of the signals below by using Fourier transform properties:

- (i) $P(\omega)$ (1 mark)(ii) $Q(\omega)$ (1 mark)(iii) $R(\omega)$ (2 marks)(iv) $S(\omega)$ (2 marks)(v) $Y(\omega)$ (2 marks)
- (b) A cascaded system that consists of an LTI system and a delay system is shown in Figure Q4(b). The input signal x(t) and impulse response of the LTI system, h(t) are given as the following:

$$\begin{aligned} x(t) &= e^{-2t}u(t) \\ h(t) &= e^{-t}u(t) \end{aligned}$$

Determine:

(i)	The Fourier transform of $y(t)$.	
		(3 marks)
(ii)	The Fourier transform of $z(t)$.	

- (c) A basic modulator circuit is shown in **Figure Q4(c)**. Modulation is a multiplication between input signal, m(t), and a carrier signal, c(t). The process yields a modulated signal, y(t). Frequency of carrier signal is higher than frequency of the input signal ($\omega_c > \omega_m$).
 - (i) Analyze the Fourier Transform of signal y(t) by using modulation properties.

(4 marks)

(3 marks)

(ii) Sketch the amplitude spectrum signal of $Y(\omega)$.

(2 marks)

CONFIDENTIAL

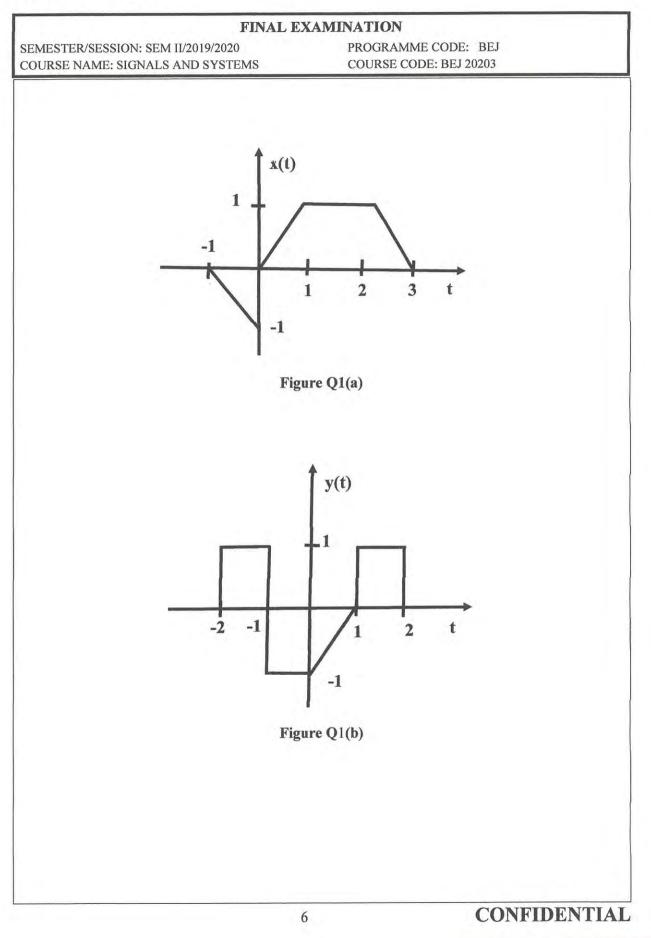
TERBUK

- Q5 (a) Given a signal $x(t) = 2\cos(2\pi t)u(t)$. Find the Laplace transform of x(t) using the definition of Laplace transform and its region of convergence (ROC) (4 marks)
 - (b) The Laplace transform of a signal x(t) is

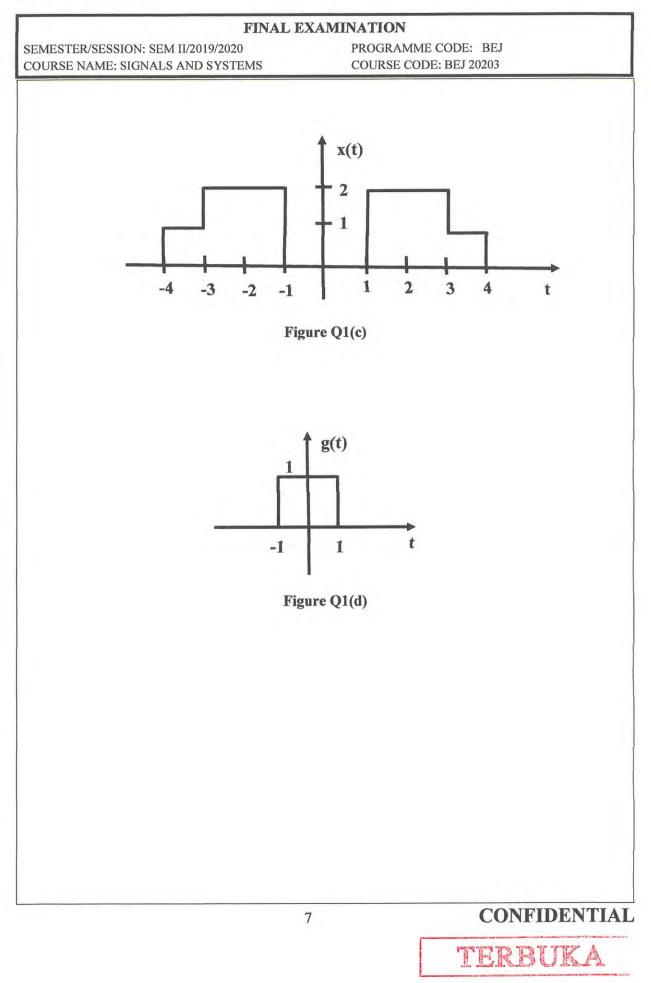
$$\mathcal{L}[x(t)] = X(s) = \frac{1}{s+1} , ROC > 1$$

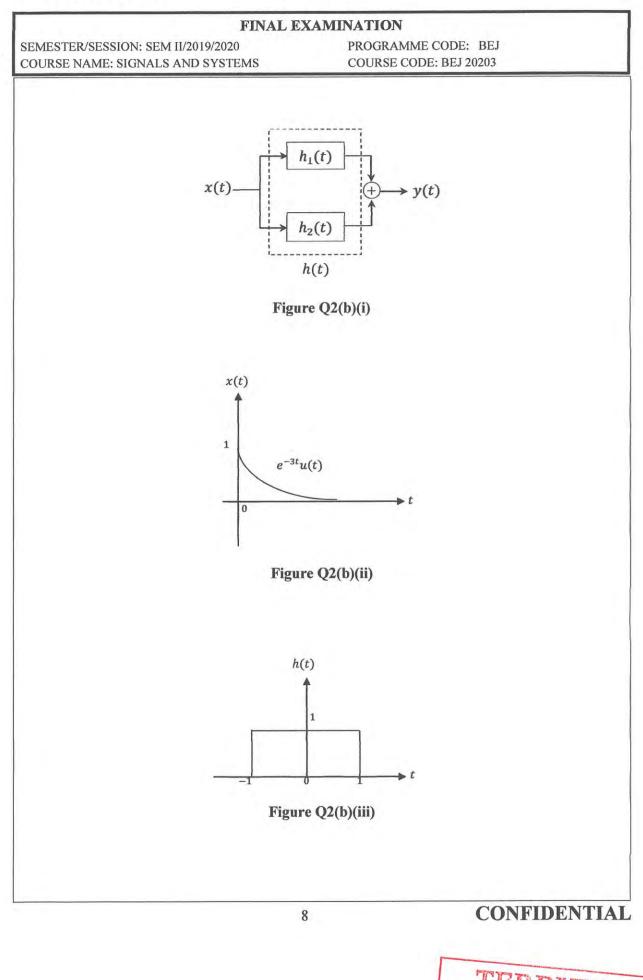
Using the properties of Laplace transform, determine the Laplace transform of $\frac{d}{dt} \left[x \left(\frac{t-1}{2} \right) \right]$

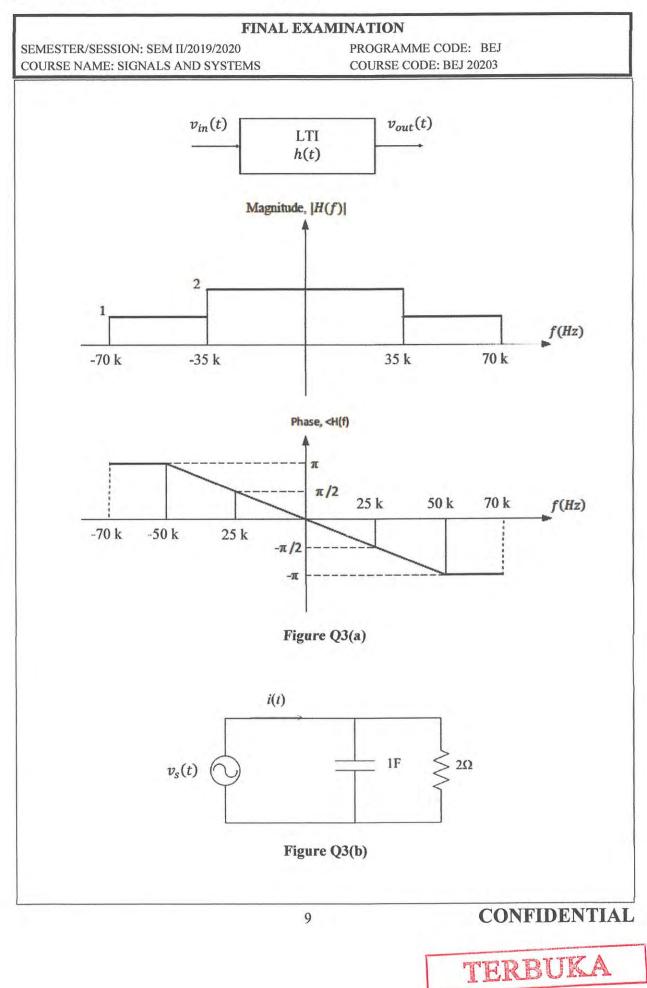
(8 marks)

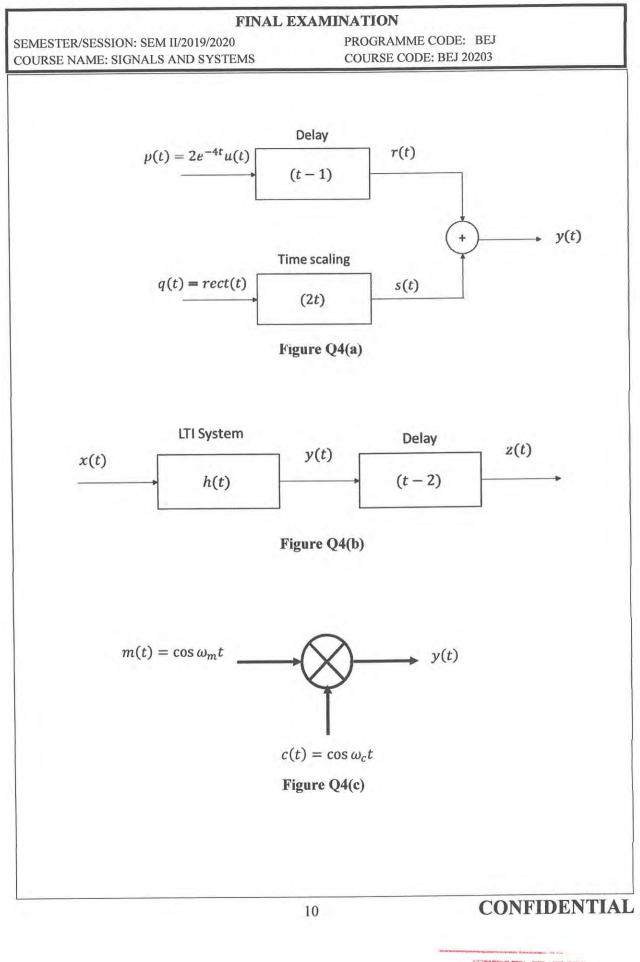

- (c) Figure Q5(c) shows an LTI system with impulse response of $h(t) = 2e^{-2t}u(t)$. The input signal of the LTI system is x(t) = u(t). Determine:
 - (i) The system causality. (2 marks)(ii) The system stability.
 - (iii) The Laplace transform of y(t). (2 marks)

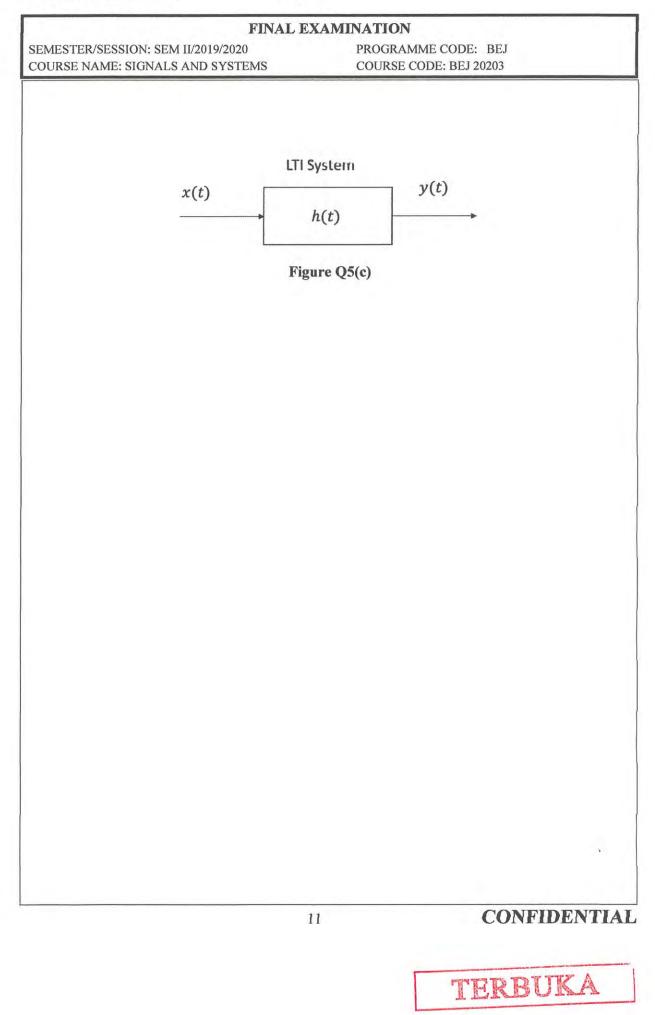
(4 marks)


-END OF QUESTIONS-




BEJ 20203


TERBUKA



BEJ 20203

TERBUT

.

BEJ 20203

	FINAL	EXAMINATION			
EMESTER/SESSION COURSE NAME: SIG	I: SEM II/2019/2020 NALS AND SYSTEMS		ME CODE: BEJ DE: BEJ 20203		
	TABLE 1: INI	DEFINITE INTEGR	RALS		
$\int \cos at dt = \frac{1}{a} \sin a t$	in at	$\int \sin at dt = -$	$-\frac{1}{a}\cos at$		
	$\cos at + \frac{1}{a}t\sin at$	1.5	$\int t\sin atdt = \frac{1}{a^2}\sin at - \frac{1}{a}t\cos at$		
$\int t e^{at} dt = \frac{1}{a^2} e^{at}$	(at - 1)	$\int \frac{1}{(a^2+t^2)} dt$	$=\frac{1}{a}\tan^{-1}\left(\frac{t}{a}\right)$		
	TABLE 2:	EULER'S IDENTII	Y		
	$e^{\pm j\pi/2} - \pm j$		$A \angle \pm \theta = A e^{\pm j\theta}$		
	$e^{\pm jk\pi} = \cos k\pi$	е	$\pm j\theta = \cos\theta \pm j\sin\theta$		
$\cos \theta$	$=\frac{1}{2} \left(e^{j\theta} + e^{-j\theta} \right)$	si			
	TABLE 3:	COMPLEX NUMBI	ER		
s = a + jb = a	$s \angle \pm \theta = s e^{\pm j\theta}$	$ s = \sqrt[2]{a^2 + b^2}$	$\theta = \tan^{-1}\left(\frac{b}{a}\right)$		
		ONOMETRIC IDEN	TITIES		
sin 6	$\theta = \cos\left(\theta - \frac{\pi}{2}\right)$		$\cos\theta = \sin(\theta + \frac{\pi}{2})$		
$\sin(\alpha \pm \beta) =$	$\sin \alpha \cos \beta \pm \cos \alpha \sin \beta$		$\beta) = \cos \alpha \cos \beta \mp \sin \alpha \sin \beta$		
	sin ²	$\alpha + \cos^2 \beta = 1$			
sin 2	$\alpha = 2\sin\alpha\cos\alpha$	CC	$\cos 2\alpha = 2\cos^2 \alpha - 1$		
cos 2	$\alpha = 1 - 2\sin^2\alpha$	COS	$s 2\alpha = \cos^2 \alpha - \sin^2 \alpha$		
TABLE 5: V		INE AND EXPONE L MULTIPLE OF	a state for the		
Function	Value	Function	Value		
$\cos 2n\pi$	1	e ^{j2nπ}	1		
$\sin 2n\pi$	0	e ^{jnπ}	$(-1)^n$		
$\cos n\pi$	$(-1)^{n}$	$e^{\frac{jn\pi}{2}}$	$\begin{cases} (-1)^{\frac{n}{2}}, n = \text{even} \end{cases}$		
$\sin n\pi$	0	E Z	$\begin{cases} (-1)^{\frac{n}{2}} , n = \text{even} \\ j(-1)^{\frac{n-1}{2}} , n = \text{odd} \\ \end{cases}$ $\begin{cases} (-1)^{\frac{n-1}{2}} , n = \text{odd} \\ 0 , n = \text{even} \end{cases}$		
$\cos\left(\frac{n\pi}{2}\right) \qquad \begin{cases} (-1)^{\frac{n}{2}} & , n = \text{even} \\ 0 & , n = \text{odd} \end{cases}$		$\sin\left(\frac{n\pi}{2}\right)$	$\int (-1)^{\frac{n-1}{2}} n = \text{odd}$		

CONFIDENTIAL

TERBUKA

BEJ 20203

		FINAL	EXAMINATION
	MESTER/SESSION: SEM II/2019/2020 PURSE NAME: SIGNALS AND SYSTEMS		PROGRAMME CODE: BEJ COURSE CODE: BEJ 20203
JUR			COURSE CODE. BEJ 20203
		TABLE 6	: FOURIER SERIES
		$x(t) = \sum_{n = -\infty}^{\infty} x_n$ $x_n = \frac{1}{T} \int_{\alpha}^{\alpha + T} x(t) dt$	
	Trigonometric	$x(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n = \frac{2}{T} \int_{\alpha}^{\alpha + T} x dx$	$a_n \cos n \frac{2\pi}{T} t + b_n \sin n \frac{2\pi}{T} t$ (t) $\cos n \frac{2\pi}{T} t dt$, $n = 0, 1, 2, 3$
	Amplitude-phase	$\frac{1}{x(t) = X_0 + \sum_{n=1}^{\infty}}$	$(t) \sin n \frac{2\pi}{T} t dt, n = 1, 2, 3 \dots$ $A_n \cos(n \frac{2\pi}{T} t + \theta_n)$ $\sqrt[4]{a_n^2 + b_n^2}, \theta_n = \angle X_n = -\tan^{-1}\left(\frac{b_n}{\mu}\right)$
	$\frac{\text{TABLE 7: DEFI}}{\text{FOURIER TRANS}}$ $[t] = X(\omega) = \int_{-\infty}^{\infty} x(t)$ $[t] = X(f) = \int_{-\infty}^{\infty} x(t)$	FORM :)e ^{-jwt} dt	DURIER AND LAPLACE TRANSFORM INVERSE FOURIER TRANSFORM $x(t) = \mathcal{F}^{-1}[X(\omega)] = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\omega) e^{j\omega t} d\omega$ $x(t) = \mathcal{F}^{-1}[X(f)] = \int_{-\infty}^{\infty} X(f) e^{j2\pi ft} df$
	$LAPLACE TRANSBilateralt)] = X(s) = \int_{-\infty}^{\infty} x(t)$ Unilateral t)] = X(s) = $\int_{0}^{\infty} x(t)$	e ^{-st} dt	INVERSE LAPLACE TRANSFORM $x(t) = L^{-1}[X(s)] = \frac{1}{2\pi j} \int_{c-j\infty}^{c+j\infty} X(s) e^{st} ds$
	$s = \sigma + j\omega$		

CONFIDENTIAL

TERBUKA

BEJ 20203

	FINAL EXAMINATIO		
ESTER/SESSION: SEM		RAMME CODE: BEJ SE CODE: BEJ 20203	
	TABLE 8: FOURIER TRANSFO		
Time domain, $x(t)$	Frequency domain, $X(\omega)$	Frequency domain, $X(f)$	
$\delta(t)$	1	1	
1	$2\pi\delta(\omega)$	$\delta(f)$	
u(t)	$\pi\delta(\omega) + \frac{1}{j\omega}$	$\frac{\delta(f)}{2} + \frac{1}{j2\pi f}$	
$u(t+\tau)-u(t-\tau)$	$\frac{2\sin(\omega\tau)}{\omega} = 2\tau\operatorname{sinc}(\omega\tau)$	$2\tau \operatorname{sinc} 2f\tau$	
rect(t)	$sinc(\omega)$	sinc(f)	
<i>t</i>	$\frac{-\frac{2}{\omega^2}}{2}$	$-\frac{2}{(2\pi f)^2}$	
sgn(t)	$\frac{2}{j\omega}$	$\frac{1}{j\pi f}$	
$e^{-at}u(t)$	$\frac{1}{a+j\omega}$	$\frac{1}{\alpha + j2\pi f}$	
$e^{at}u(-t)$	$\frac{1}{a-j\omega}$ 2a	$\frac{1}{\alpha - j2\pi f}$	
$e^{-a t }$	$\frac{2a}{a^2 + \omega^2}$	$\frac{2a}{a^2 + 4\pi^2 f^2}$	
$e^{j\omega_0 t}$	$2\pi\delta(\omega-\omega_0)$	$\delta(f-f_0)$	
$t^n e^{-at} u(t)$	$\frac{n!}{(a+j\omega)^{n+1}}$	$\frac{n!}{(a+j2\pi f)^{n+1}}$ $\frac{\delta(f-f_o)-\delta(f+f_o)}{\delta(f+f_o)}$	
$\sin \omega_0 t$	$j\pi[\delta(\omega+\omega_0)-\delta(\omega-\omega_0)]$	$\frac{\delta(f-f_o)-\delta(f+f_o)}{2j}$	
$\cos \omega_0 t$	$\pi[\delta(\omega+\omega_0)-\delta(\omega-\omega_0)]$	$\frac{2j}{\delta(f-f_o)+\delta(f+f_o)}{\frac{2}{2\pi f_0}}$	
$e^{-at}\sin\omega_0tu(t)$	$\frac{\omega_0}{(a+j\omega)^2 + \omega_0^2}$ $\frac{a+j\omega}{a+j\omega}$	$\frac{2\pi f_0}{(a+j2\pi f)^2 + (2\pi f_0)^2} \\ a+2\pi f$	
$e^{-at}\cos\omega_0 tu(t)$	$\frac{a+j\omega}{(a+j\omega)^2+\omega_0^2}$	$\frac{a + 2\pi f}{(a + j2\pi f)^2 + (2\pi f_0)^2}$	

CONFIDENTIAL

TERBUKA

...

BEJ 20203

	F	INAL EXAMINATION		
	ON: SEM II/2019/2020	PROGRAMME C		
DURSE NAME: S	SIGNALS AND SYSTEM			
	TABLE 9: FO	URIER TRANSFORM PROP		
Property	Time domain, x(t)	Frequency domain, X(ω)	Frequency domain, $X(f)$	
Linearity	$a_1 x_1(t) + a_2 x_2(t)$	$a_1 X_1(\omega) + a_2 X_2(\omega)$	$a_1 X_1(f) + a_2 X_2(f)$	
Time scaling	x(at)	$\frac{1}{ a } X\left(\frac{\omega}{a}\right)$	$\frac{1}{ a }X\left(\frac{f}{a}\right)$	
Time shifting	$x(t-t_0)u(t-t_0)$	$e^{-j\omega t_0}X(\omega)$	$e^{-j2\pi ft_0}X(f)$	
Frequency shifting	$e^{j\omega_0 t}x(t)$	$X(\omega-\omega_0)$	$X(f-f_o)$	
Modulation	$\cos(\omega_0 t) x(t)$	$\frac{1}{2}[X(\omega+\omega_0)+X(\omega-\omega_0)]$	$\frac{1}{2}[X(f - f_o) + X(f + f_o)]$	
	$\sin(\omega_0 t) x(t)$	$\frac{j}{2}[X(\omega+\omega_0)-X(\omega-\omega_0)]$	$\frac{j}{2}[X(f+f_o) - X(f-f_o)]$	
Time differentiation	$\frac{d}{dt}(x(t))$	<i>jωX</i> (ω)	$j2\pi f X(f)$	
	$\frac{d^n}{dt^n}(x(t))$	$(j\omega)^n X(\omega)$	$(j2\pi f)^n X(f)$	
Time integration	$\int_{-\infty}^{t} x(t) dt$	$\frac{X(\omega)}{j\omega} + \pi X(\omega) \delta(\omega)$	$\frac{X(f)}{j2\pi f} + \frac{1}{2}X(0)\delta(f)$	
Frequency differentiation	$t^n x(t)$	$(j)^n \frac{d^n}{d\omega^n} X(\omega)$	$\left(\frac{j}{2\pi}\right)^n \frac{d^n}{df^n} X(f)$	
Time Reversal	x(-t)	$X(-\omega)$ or $X^*(\omega)$	X(-f)	
Duality	$\frac{x(-t)}{X(t)}$	$2\pi x(-\omega)$	X(-f)	
Convolution in t	$x_1(t) * x_2(t)$	$X_1(\omega) \cdot X_2(\omega)$	$X(f) \cdot Y(f)$	
Multiplication	$x_1(t)x_2(t)$	$\frac{1}{2\pi}X_1(\omega)*X_2(\omega)$	X(f) * Y(f)	
Parseval's Theorem	$\int_{-\infty}^{\infty} x(t) ^2 dt$	$\frac{\frac{1}{2\pi}X_1(\omega) * X_2(\omega)}{\frac{1}{2\pi}\int_{-\infty}^{\infty} X(\omega) ^2 d\omega}$	$\int_{-\infty}^{\infty} X(f) ^2 df$	

CONFIDENTIAL

TERBUKA

			FINAL	EXAM	INATION	CODE: BEJ	1	
ESTER/SESSION:			MS		PROGRAMME COURSE CODE	: BEJ 20203		
IRSE NAME: SIGN	ALS A	ND SISIE	0. T. AI	PLACE	TRANSFORM	PAIR	ROC	
		ROC		Time domain,	5 40111 /	RUC		
'ime domain,			1		x(t), t > 0	X(s)	1	
x(t), t > 0	X	(s)			cos bt	5	Re(s) > 0	
δ(t)		1	A	ll <i>s</i>		$\frac{\overline{s^2 + b^2}}{b}$	Re(s) > 0	
		1	Re(s) > 0		sin bt	$s^2 + b^2$		
u(t)		s 1			-at - Lt	s+a	Re(s) > -a	
t		$\frac{1}{s^2}$	Re(s) > 0	$e^{-at}\cos bt$	$(s+a)^2 + b^2$		
t		$\frac{s^2}{n!}$			$e^{-at} \sin bt$	<u>b</u>	Re(s) > -a	
t ⁿ	1	$\frac{n!}{s^{n+1}}$	Re((s) > 0	e sin be	$\overline{(s+a)^2+b^2}$		
v	-	1	1		t cos bt	$\frac{s^2 - b^2}{s^2 - b^2}$	Re(s) > 0	
e^{-at}			Re(s	s) > -a	t cos bi	$\overline{(s^2+b^2)^2}$		
C	-	s+a	-		t sin bt	2bs	Re(s) > 0	
tc^{-at}	7	$\frac{1}{(s+a)^2}$	Re(s) > -c		t SIII DL	$(s^2 + b^2)^2$		
		and the second sec						
	-	DI T 11.	LAPL	ACE TH	RANSFORM PR	OPERTIES	ROC	
		Signal La		Lap	place I ransform		RUC	
Property		x(t)			X(s)	R	R	
1		$\frac{x(t)}{x_1(t), x_2(t)}$			$X_1(s), X_2(s)$		R_1, R_2	
		$\frac{x_1(t), x_2}{ax_1(t) + b}$			$X_1(s) + bX_2(s)$	At least $R_1 \cap R_2$		
Linearity		$\frac{dx_1(t)+t}{x(t-t)}$		$e^{-st_0}X(s)$		R	R Shifted version of R (i.e., s is	
Time shifting		x(t-t)	.0)	V(c-c)		Shifted version of A (i.e., s is in R		
Shifting in the s-		$e^{s_0t}x($	(t)			in the ROC if $s - s_0$ is in R		
Domain		(1)		$1 \sqrt{s}$		Scaled ROC (i.e., s is in the		
Time scaling		x(at)		$\frac{1}{ a }X\left(\frac{s}{a}\right)$	ROC if s	$/a ext{ is in } R$)	
		(4	.)	X(s*)		R		
Conjugation		x*(t			$X_1(s) \cdot X_2(s)$	At least $R_1 \cap R_2$		
Convolution		$x_1(t) *$	x ₂ (t)		sX(s)		At least R	
		$\frac{d}{dt}x(t)$		eXfe	$r(s) = r(0^+)$ (Unilateral) R right		and plane	
Differentiation				5/ (5	n=1 (0+	$\sum_{n=1}^{\infty} e^{n-2}$	$(x^{+}) - x^{n-1}(0^{+})$	
Time Domain		$\frac{d^n}{dt^n}$	c(t)	S	$nX(s) - s^{n-1}x(0)$		$\dots - sx^{n-2}(0^+) - x^{n-1}(0^+)$	
		dt"	-		d	R		
Differentiation	in the	-tx	:(t)		$\frac{d}{ds}X(s)$		() () > 0)	
s-Domain			-	4	At least $R \cap \{Re(s) > 0\}$			
Integration in the $\int_{-\infty}^{t} x dx$		(τ)dτ	S. 1.	$\frac{1}{s}X(s)$				
Time Domai	in	J-00		ial and E	inal- Value Theore	ems		
			init	ial- allu r	Final- Value Theorem impulses or higher $f = \lim sX(s)$	r order singularitie	es at $t = 0$, then	
If $x(t) =$	= 0 for	t < 0 and	x(t) co	~(0+	$=\lim_{s\to\infty} sX(s)$			
				AU				
		If $x(t)$	= 0 for	rt < 0 ar	and has a finite limit			
				lim x	$f(t) = \lim_{s \to \infty} sX(s)$			

CONFIDENTIAL

