

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION (TAKE HOME) SEMESTER II SESSION 2019/2020

		OPEN BOOK EXAMINATION
INSTRUCTION	:	ANSWER ALL QUESTIONS
DURATION	:	4 HOURS
EXAMINATION DATE	:	JULY 2020
PROGRAMME CODE	1	BEJ / BEV
COURSE CODE	:	BEE 11403
COURSE NAME	:	ENGINEERING MATHEMATICS II

THIS QUESTION PAPER CONSISTS OF NINE (9) PAGES

BEE 11403

Q1

Q2

- (a) Consider the *R*-*L* circuit with a source of emf, E(t) as shown in Figure Q1. The values of resistance, $R = 15 \Omega$, inductor, L = 5 H, voltage source, E(t) = 10 V and the initial current is $i(0) = i_0$. Show that the current i(t), flowing in the circuit at time t can be written in terms of i_0 using the linear differential equation method. (11 marks)
- (b) The following equation represents a second-order non-homogeneous ordinary differential equation with constant coefficients,

$$\frac{d^2y}{dx^2} - 2\frac{dy}{dx} - 8y = 12\cos 2x - 4\sin 2x$$

By using the method of undetermined coefficient, construct the general solution for the above second-order ordinary differential equation.

(14 marks)

A system is given by a circuit network as shown in Figure Q2.

(a) Show that the linear differential equations for the system are given by,

$$i'_{1}(t) = 0.5i_{1} - 3i_{2} + 5e^{-2t}$$

$$i'_{2}(t) = 2i_{1} - 6i_{2}$$

(6 marks)

(b) By considering the initial conditions, $i_1(0) = -i_2(0) = 1$, calculate the particular solution of the linear differential equations system.

(19 marks)

BEE 11403

(a) By applying the definition of Laplace Transform, solve the Laplace transform of

$$f(t) = \begin{cases} e^{-2t} & 0 \le t < 5\\ -t & t \ge 5 \end{cases}$$

(10 marks)

(b) A second-order differential equation is given as follows:

$$f''(t) - 9f(t) = g(t)$$

where g(t) is a non-continuous function represented by,

$$g(t) = 5H(t) + H(t-1)$$
.

Solve the differential equation using Laplace Transform, if the initial conditions are f(0) = 0 and f'(0) = 1.

(20 marks)

- END OF QUESTIONS -

COURSE NAME

BEE 11403

FINAL EXAMINATION

SEMESTER / SESSION : SEM II / 2019/2020

PROGRAMME CODE : BEJ/BEV

: ENGINEERING MATHEMATICS II

COURSE CODE : BEE 11403

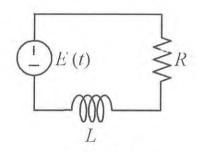


Figure Q1

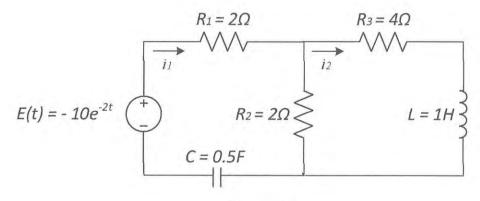


Figure Q2

BEE 11403

FINAL EXAMINATION

SEMESTER / SESSION : SEM II / 2019/2020

PROGRAMME CODE: BEJ/BEV

COURSE NAME

: ENGINEERING MATHEMATICS II

COURSE CODE : BEE 11403

CONFIDENTIAL

TERBUKA

FORMULAS

Second-order Differential Equation

The roots of characteristic equation and the general solution for differential equation ay'' + by' + cy = 0.

ecteristic equation: $am^2 + bm + c = 0.$	
The roots of characteristic equation	General solution
Real and different roots: m_1 and m_2	$y - Ae^{m_1x} + Be^{m_2x}$
Real and equal roots: $m = m_1 = m_2$	$y = (A + Bx)e^{mx}$
Complex roots: $m_1 = \alpha + \beta i$, $m_2 = \alpha - \beta i$	$y = e^{\alpha x} (A \cos \beta x + B \sin \beta x)$
	The roots of characteristic equationReal and different roots: m_1 and m_2 Real and equal roots: $m = m_1 = m_2$

The method of undetermined coefficients for a system of first-order linear differential equations

For non-homogeneous for a system of first-order linear differential equations

 $\mathbf{Y}'(x) = A \mathbf{Y}(x) + \mathbf{G}(x)$, the particular integral solution $\mathbf{Y}_p(x)$ is given by:

$\mathbf{G}(x)$	$\mathbf{Y}_p(x)$	$\mathbf{G}(x)$	$\mathbf{Y}_p(x)$	
$\begin{array}{c c} \mathbf{u} & \mathbf{a} \\ \mathbf{u}x + \mathbf{v} & \mathbf{a}x + \mathbf{b} \end{array}$		ue ^{2x}	ae ^{^{λx}}	
		$\mathbf{u}\cos\alpha x$ or $\mathbf{u}\sin\alpha x$	$a\sin\alpha x + b\cos\alpha x$	

5

COURSE NAME

BEE 11403

FINAL EXAMINATION

SEMESTER / SESSION : SEM II / 2019/2020

00

PROGRAMME CODE: BEJ/BEV

: ENGINEERING MATHEMATICS II COURSE CODE

: BEE 11403

CONFIDENTIAL

TERBUKA

Power Series Method

$$\sum_{m=0}^{\infty} c_m x^m = c_0 + c_1 x + c_2 x^2 + c_3 x^3 + c_4 x^4 + \cdots$$

Where c_0 , c_1 , c_2 ... are constants

Representation of Functions in Power Series

	$e^x = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots \sum_{m=0}^{\infty} \frac{x^m}{m!}, -\infty < x < \infty$
$\sin x = x$	$-\frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots \sum_{m=0}^{\infty} (-1)^m \frac{x^{2m+1}}{(2m+1)!}, -\infty < x < \infty$
$\cos x = 1$	$-\frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots \sum_{m=0}^{\infty} (-1)^m \frac{x^{2m}}{(2m)!}, -\infty < x < \infty$
$\ln(1+x)$	$= x - \frac{x^2}{2!} + \frac{x^3}{3!} + \dots \sum_{m=1}^{\infty} (-1)^{m+1} \frac{x^m}{m!}$
$\frac{1}{1-x} = 1$	$x^{2} + x + x^{2} + x^{3} + \dots \sum_{m=0}^{\infty} x^{m}$
$(1+x)^{\alpha}$ =	$= 1 + \alpha x + \frac{\alpha(\alpha - 1)}{2!}x^{2} + \frac{\alpha(\alpha - 1)(\alpha - 2)}{3!}x^{3} + \cdots$

BEE 11403

FINAL EXAMINATION

SEMESTER / SESSION : SEM II / 2019/2020

PROGRAMME CODE : BEJ/BEV

1.1

.

COURSE NAME : ENGINEERING MATHEMATICS II COURSE CODE : BEE 11403

14 - Le

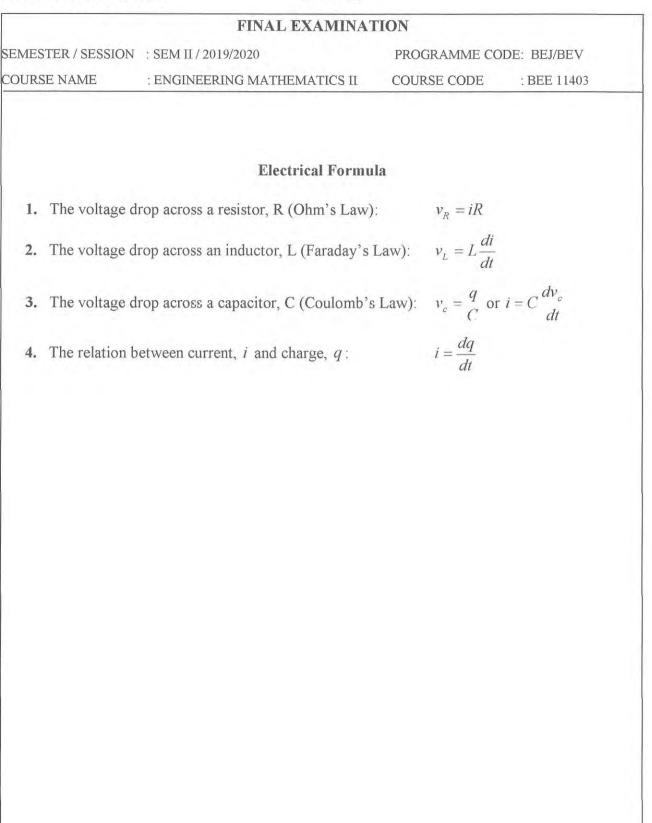
CONFIDENTIAL

TERBUKA

$\mathcal{L}{f(t)} = \int_0^\infty f(t)e^{-st}dt - F(s)$				
f(t)	F(s)	f(t)	F(s)	
а	$\frac{a}{s}$	$\int_0^t f(\tau) d\tau$	$\frac{F(s)}{s}$	
e ^{at}	$\frac{1}{s-a}$	H(t-a)	e^{-as} S	
sin <i>at</i>	$\frac{a}{s^2 + a^2}$	f(t-a)H(t-a)	$e^{-as}F(s)$	
cosat	$\frac{s}{s^2 + a^2}$	$\delta(t-a)$	e^{-as}	
sinh <i>at</i>	$\frac{a}{s^2 - a^2}$	$f(t)\delta(t-a)$	$e^{-as}f(a)$	
cosh <i>at</i>	$\frac{s}{s^2 - a^2}$	$\int_0^t f(u)g(t-u)du$	$F(s) \cdot G(s)$	
t^n , $n = 1, 2, 3, \dots$	$\frac{n!}{s^{n+1}}$	<i>y</i> (<i>t</i>)	Y(s)	
$e^{al}f(t)$	F(s-a)	y'(t)	sY(s) - y(0)	
$t^n f(t)$, n = 1, 2, 3,	$(-1)^n \frac{d^n}{ds^n} F(s)$	y"(t)	$s^2Y(s) - sy(0) - y'(0)$	

7

BEE 11403



BEE 11403

FINAL EXAMINATION

SEMESTER / SESSION : SEM II / 2019/2020 PROGRAMME CODE : BEJ/BEV

COURSE NAME : ENGINEERING MATHEMATICS II COURSE CODE : BEE 11403

IDENTITY OF TRIGONOMETRY

$\frac{1}{2}[sin(A+B) - sin(A -$	3)]
$\frac{1}{2}[\cos(A+B)+\cos(A-$	B)]
$-\frac{1}{2}[\cos(A+B)-\cos(A$	(-B)]
es: $sin(-\theta) = -sin(\theta)$, c	$ps(-\theta) = cos(\theta), tan(-\theta) = -tan(\theta)$
θεοεθ	
$\theta - \sin^2\theta = 2\cos^2 - 1 =$	$1 - 2sin^2\theta$
$an\theta$ $tan^2\theta$	
$)^{n} = \begin{cases} -1, & \text{if } n \text{ odd} \\ 1, & \text{if } n \text{ even} \\ 12 \end{cases}$	
r n = 0, 1, 2,	
$sin2n\pi = 0$ for $n =$	0,1,2,
0, if n odd 1) ^{n/2} , if n even	
$1)^{\frac{n-1}{2}}, if n odd$ 0. if n even	
0.17 11 11 11 11	
0, if n odd 1) ^{$n/2$} , if n even 1) $\frac{n-1}{2}$, if n odd 0. if n even	

9

CONFIDENTIAL

TERBUKA