

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION (TAKE HOME) **SEMESTER II SESSION 2019/2020**

COURSE NAME

: ELECTROMAGNETIC FIELDS AND

WAVES

COURSE CODE

: BEJ 20303

PROGRAMME CODE : BEJ

EXAMINATION DATE : JULY 2020

DURATION

: 5 HOURS

INSTRUCTION

: ANSWER ALL QUESTIONS

OPEN BOOK EXAMINATION

THIS QUESTION PAPER CONSISTS OF TEN (10) PAGES

CONFIDENTIAL

TERBUKA

- Q1 (a) Two concentric conducting sphere with radius a and b where b > a are centred at the origin as shown in the **Figure Q1(a)**. The figure shows the cross-section of the spherical shell. Noted that, the inner conductor carries a total electric charge, +Q and the outer conductor carries a total electric charge, -Q. The space between the shells is filled with material with the dielectric constant of ε_{r1} and free space, ε_o
 - (i) Based on Figure Q1(a), draw the free charge density by using plus sign, + (positive charge density, $+\rho_s$) and negative sign, (negative charge density, $-\rho_s$) and sketch the vector electric field intensity, E.

(2 marks)

(ii) Based on **Figure Q1(a)**, indicate the polarization charge density, (**P**) that may exist by marking it as \bigoplus (positive in circle) and \bigoplus (negative in circle) for positive and negative charge density, respectively and **sketch** the **P**.

(3 marks)

(iii) State the vector of electric flux density, **D**, **E** and **P** between two conducting planes

(5 marks)

(iv) Calculate the surface bound density, ρ_{sb} at radius a and b, and the volume bound density, ρ_{vb} in the medium of a dielectric.

(3 marks)

- (b) Given the radius of inner conductor in Figure Q1(a) is a = 4mm, and the radius for an outer layer is b = 10mm, if the space in the shell between $\emptyset = 120^{\circ}$ to $\emptyset = 240^{\circ}$ is equipped with the dielectric constant of ε_{r1} .
 - (i) Determine the electric potential between two conductors

(3 marks)

CONFIDENTIAL

(ii) Calculate the capacitance between two conductors

(3 marks)

(iii) Now, another dielectric material with the dielectric constant of ε_{r2} is loaded to the shells to replace the free space, determine the total capacitance and polarization charge density, P_2

(6 marks)

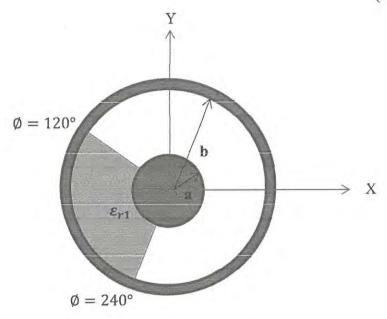


Figure Q1(a): Cross-section of a spherical shell

Q2 (a) Calculate the magnetic field, **B** at point a, b and c as given in Figure Q2(a).

(15 marks)

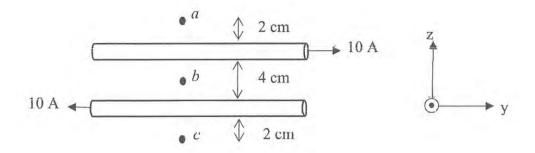


Figure Q2(a): Two infinitely long conducting wires

- (b) In your own words, conclude your findings based on your answer in Q2(a).(3 marks)
- (c) A long cylindrical conductor as shown in Figure Q2(c) is located at the origin has a radius, a and carries current characterized by current density, $\vec{J} = J_0 e^{-r} \hat{z}$, where J_0 is a constant and r is the radial distance from the cylinder's axis. Obtain an expression for the magnetic field, \vec{H} for
 - (i) $0 \le r \le a$ (5 marks) (ii) $r \ge a$ (2 marks)

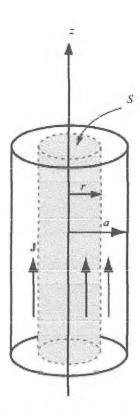


Figure Q2(c): An infinitely long cylindrical conductor

Q3 (a) Briefly -define Faraday's Law.

(4 marks)

- (b) A conducting bar can slide freely over two conducting rails as shown in Figure Q3(b). Calculate the induced voltage in the bar
 - (i) If the bar is stationed at y= 8 cm and $\mathbf{B} = 4 \cos 10^6 \text{ t } \mathbf{a}_z \text{ mWb/m}^2$

(8 marks)

(ii) If the bar slides at a velocity $u = 20 a_y \text{ m/s}$ and $B = 4a_z \text{ mWb/m}^2$

(8 marks)

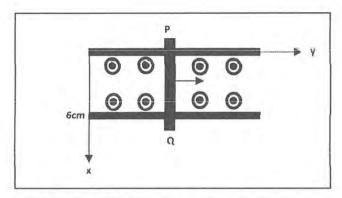


Figure Q3(b): A conducting bar

(c) A 50 Hz High Voltage (HV) power transmission line (Alternate Current, AC) can produce a strong magnetic field varies with time which will induce dangerous voltage on the adjacent cable (victim) as shown in **Figure Q3(c)(i)**. The victim's cable is laid parallel with the transmission line at distance, L = 2 km and the distance between victim cable and its ground is 10 cm as shown in **Figure Q3(c)(ii)** and can be represented as a complete equivalent circuit as shown in **Figure Q3(c)(iii)**. Determine the total induce voltage (V_{emf}) on the victim's cable if the magnetic field (H-field) produce at the intended location is B = 0.99 μT using a Faraday's law.

(5 marks)

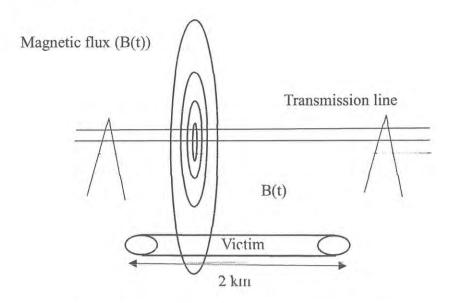


Figure Q3(c)(i): Power Transmission line produce strong magnetic field (H(t)) and induced V_{emf} to the adjacent cable.

Figure Q3(c)(ii): Victim Cable parameters.

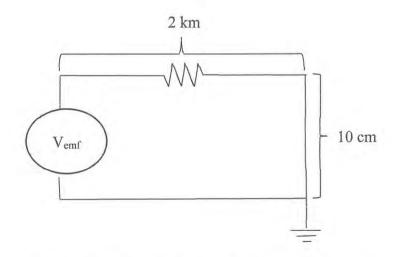


Figure Q3(c)(iii): Equivalent circuit for a victim cable

Q4 (a) A uniform plane wave is a particular solution of Maxwell's Equations with E assuming the same direction, same magnitude and same phase in infinite planes perpendicular to the direction of propagation. This is also applied to the H field. By using the formulas obtained for the plane waves in lossy media, determine the permeability (μ) , phase constant (β) , conductivity (σ) , attenuation constant (α) , permittivity (ε) , and phase velocity, ν of other three mediums.

(6 marks)

- (b) The electric field intensity of a linearly polarized uniform plane wave propagating in the +z direction in seawater is $\mathbf{E} = \mathbf{a_x} \ 50\cos(2x10^7\pi t)$ (V/m) at z = 0. The constitutive parameters of seawater are $\varepsilon_r = 72$, $\mu_r = 1$ and $\sigma = 4$ (S/m). Determine:
 - (i) The type of the medium

(3 marks)

(ii) The phase constant, β and attenuation constant, α

(2 marks)

(iii) The phase velocity, ν and intrinsic impedance, η

(4 marks)

(iv) The skin depth, δ and wave length, λ

(3 marks)

- (v) The distance at which the amplitude of **E** is 2% of its value at z = 0 (2 marks)
- (vi) Write the expressions for $\mathbf{E}(z,t)$ and $\mathbf{H}(z,t)$ at z=1m as function of t (5 marks)

- END OF QUESTIONS-

TERBUKA

FINAL EXAMINATION

SEMESTER/SESSION: II/2019/2020

COURSE NAME : ELECTROMAGNETIC FIELDS AND COURSE CODE : BEJ 20303

PROGRAMME CODE: BEJ

WAVES

Formula

	Cartesian	Cylindrical	Spherical	
Coordinate parameters	x, y, z	r, ϕ, z	$R, heta,\phi$	
Vector \vec{A}	$A_x \hat{\mathbf{x}} + A_y \hat{\mathbf{y}} + A_x \hat{\mathbf{z}}$	$A_{r}\hat{\mathbf{r}} + A_{\phi}\hat{\mathbf{q}} + A_{z}\hat{\mathbf{z}}$	$A_{\mathcal{R}}\hat{\mathbf{R}} + A_{\varphi}\hat{\mathbf{\theta}} + A_{\varphi}\hat{\mathbf{\phi}}$	
Magnitude \vec{A}	$\sqrt{{A_x}^2 + {A_y}^2 + {A_z}^2}$	$\sqrt{{A_r}^2 + {A_\phi}^2 + {A_z}^2}$	$\sqrt{{A_R}^2 + {A_{\theta}}^2 + {A_{\phi}}^2}$	
Position vector, \overrightarrow{OP}	$x_1 \hat{\mathbf{x}} + y_1 \hat{\mathbf{y}} + z_1 \hat{\mathbf{z}}$ for point $P(x_1, y_1, z_1)$	$r_1\hat{\mathbf{r}} + z_1\hat{\mathbf{z}}$ for point $P(r_1, \phi_1, z_1)$	$R_{1}\hat{\mathbf{R}}$ for point $P(R_{1}, \theta_{1}, \phi_{1})$ $\hat{\mathbf{R}} \bullet \hat{\mathbf{R}} = \ddot{\boldsymbol{\theta}} \bullet \ddot{\boldsymbol{\theta}} = \hat{\boldsymbol{\phi}} \bullet \hat{\boldsymbol{\phi}} = 1$ $\hat{\mathbf{R}} \bullet \hat{\boldsymbol{\theta}} = \hat{\boldsymbol{\theta}} \bullet \hat{\boldsymbol{\phi}} = \hat{\boldsymbol{\phi}} \bullet \hat{\mathbf{R}} = 0$ $\hat{\mathbf{R}} \times \hat{\boldsymbol{\theta}} = \hat{\boldsymbol{\phi}}$ $\hat{\boldsymbol{\theta}} \times \hat{\boldsymbol{\phi}} = \hat{\mathbf{R}}$ $\hat{\boldsymbol{\phi}} \times \hat{\mathbf{R}} = \hat{\boldsymbol{\theta}}$	
Unit vector product	$\hat{\mathbf{x}} \bullet \hat{\mathbf{x}} = \hat{\mathbf{y}} \bullet \hat{\mathbf{y}} = \hat{\mathbf{z}} \bullet \hat{\mathbf{z}} = 1$ $\hat{\mathbf{x}} \bullet \hat{\mathbf{y}} = \hat{\mathbf{y}} \bullet \hat{\mathbf{z}} = \hat{\mathbf{z}} \bullet \hat{\mathbf{x}} = 0$ $\hat{\mathbf{x}} \times \hat{\mathbf{y}} = \hat{\mathbf{z}}$ $\hat{\mathbf{y}} \times \hat{\mathbf{z}} = \hat{\mathbf{x}}$ $\hat{\mathbf{z}} \times \hat{\mathbf{x}} = \hat{\mathbf{y}}$	$\hat{\mathbf{r}} \bullet \hat{\mathbf{r}} = \hat{\boldsymbol{\varphi}} \bullet \hat{\boldsymbol{\varphi}} = \hat{\mathbf{z}} \bullet \hat{\mathbf{z}} = 1$ $\hat{\mathbf{r}} \bullet \hat{\boldsymbol{\varphi}} = \hat{\boldsymbol{\varphi}} \bullet \hat{\mathbf{z}} = \hat{\mathbf{z}} \bullet \hat{\mathbf{r}} = 0$ $\hat{\mathbf{r}} \times \hat{\boldsymbol{\varphi}} = \hat{\mathbf{z}}$ $\hat{\boldsymbol{\varphi}} \times \hat{\mathbf{z}} - \hat{\mathbf{r}}$ $\hat{\mathbf{z}} \times \hat{\mathbf{r}} = \hat{\boldsymbol{\varphi}}$		
Dot product $\vec{A} \cdot \vec{B}$	$A_x B_x + A_y B_y + A_z B_z$	$A_r B_r + A_\phi B_\phi + A_z B_z$	$A_R B_R + A_\theta B_\theta + A_\phi B_\phi$	
Cross product $\vec{A} \times \vec{B}$	$\begin{vmatrix} \hat{\mathbf{x}} & \hat{\mathbf{y}} & \hat{\mathbf{z}} \\ A_x & A_y & A_z \\ B_x & B_y & B_z \end{vmatrix}$	$egin{array}{ccccc} \hat{\mathbf{r}} & \hat{\mathbf{\phi}} & \hat{\mathbf{z}} \\ A_r & A_{\phi} & A_z \\ B_r & B_{\phi} & B_z \\ \end{array}$	$egin{array}{cccc} \hat{f R} & \hat{f heta} & \hat{f \phi} \ A_R & A_{ heta} & A_{\phi} \ B_R & B_{ heta} & B_{\phi} \ \end{array}$	
Differential length, $\overrightarrow{d\ell}$	$dx\hat{\mathbf{x}} + dy\hat{\mathbf{y}} + dz\hat{\mathbf{z}}$	$dr\hat{\mathbf{r}} + rd\phi\hat{\mathbf{\phi}} + dz\hat{\mathbf{z}}$	$dR\hat{\mathbf{R}} + Rd\theta\hat{\mathbf{\theta}} + R\sin\thetad\phi\hat{\mathbf{\phi}}$	
Differential surface, \overrightarrow{ds}	$\overrightarrow{ds}_x = dy dz \hat{\mathbf{x}}$ $\overrightarrow{ds}_y = dx dz \hat{\mathbf{y}}$ $\overrightarrow{ds}_z = dx dy \hat{\mathbf{z}}$	$\overrightarrow{ds}_r = rd\phi dz \hat{\mathbf{r}}$ $\overrightarrow{ds}_\phi = dr dz \hat{\mathbf{\varphi}}$ $\overrightarrow{ds}_z = rdr d\phi \hat{\mathbf{z}}$	$\overrightarrow{ds}_{R} = R^{2} \sin \theta d\theta d\phi \hat{\mathbf{R}}$ $\overrightarrow{ds}_{\theta} = R \sin \theta dR d\phi \hat{\mathbf{\theta}}$ $\overrightarrow{ds}_{\phi} = R dR d\theta \hat{\mathbf{\phi}}$	
Differential volume, \overrightarrow{dv}	dx dy dz	r dr dφ dz	$R^2 \sin\theta dR d\theta d\phi$	

CONFIDENTIAL

FINAL EXAMINATION

SEMESTER/SESSION: II/2019/2020

COURSE NAME

: ELECTROMAGNETIC FIELDS AND

WAVES

PROGRAMME CODE: BEJ

COURSE CODE : BEJ 20303

$Q = \int \rho_{\ell} d\ell,$	$d\overline{H} = \frac{Id\overline{\ell} \times \overline{R}}{4\pi R^3}$	$\bar{\bar{F}}_{l}$
$Q = \int \rho_s dS,$	$Id\overline{\ell} = \overline{J}_s dS = \overline{J} dv$	1
$Q = \int \rho_{v} dv$	$\oint \overline{H} \bullet d\overline{\ell} = I_{enc} = \int \overline{J}_s dS$	last
$\overline{F}_{12} = \frac{Q_1 Q_2}{4\pi\varepsilon_0 R^2} \hat{a}_{R_{12}}$	$\nabla \times \overline{H} = \overline{J}$	17
_	$\psi_m = \int \overline{B} \bullet d\overline{S}$	
$\overline{E} = \frac{F}{Q}$,	S	tai
$\overline{E} = \frac{Q_{e}}{4\pi\varepsilon_{0}R^{2}}\hat{a}_{R}$	$\psi_m = \oint \overline{B} \bullet d\overline{S} = 0$	141
0	$\psi_m = \oint \overline{A} \bullet d\overline{\ell}$	ta
$\overline{E} = \int \frac{\rho_{\ell} d\ell}{4\pi\varepsilon_{0} R^{2}} \hat{a}_{R}$	$\nabla \bullet \overline{B} = 0$	
	$\overline{B} = \mu \overline{H}$ $\overline{B} = \nabla \times \overline{A}$	8
$\overline{E} = \int \frac{\rho_s dS}{4\pi\varepsilon_0 R^2} \hat{a}_R$		ε_0
$\overline{E} = \int \frac{\rho_{v} dv}{4\pi \epsilon_{r} R^{2}} \hat{a}_{R}$	$\overline{A} = \int \frac{\mu_0 I d\ell}{4\pi R}$	μ_0
$\overline{D} - \varepsilon \overline{E}$	$\nabla^2 \overline{A} = -\mu_0 \overline{J}$	
$\psi_e = \int \overline{D} \bullet d\overline{S}$	$\overline{F} = Q(\overline{E} + \overline{u} \times \overline{B}) = m \frac{d\overline{u}}{dt}$	17
$Q_{enc} = \oint_{S} \overline{D} \cdot d\overline{S}$	$d\overline{F} = Id\overline{\ell} \times \overline{B}$	ſ-
$\rho_v = \nabla \bullet \overline{D}$	$\overline{T} = \overline{r} \times \overline{F} = \overline{m} \times \overline{B}$	J
$V_{AB} = -\int_{0}^{B} \overline{E} \bullet d\overline{\ell} = \frac{W}{\ell}$	$\overline{m} = IS\hat{a}_n$	Si
A &	$V_{emf} = -\frac{\partial \psi}{\partial t}$	
$V = \frac{Q}{4\pi\varepsilon r}$	$V_{emf} = -\int \frac{\partial \overline{B}}{\partial t} \bullet d\overline{S}$	15
$V = \int \frac{\bar{\rho}_{\ell} d\ell}{4\pi \varepsilon r}$		1
$ \oint \overline{E} \bullet d\overline{\ell} = 0 $	$V_{emf} = \int (\overline{u} \times \overline{B}) \bullet d\overline{\ell}$	
$\nabla \times \overline{E} = 0$	$I_d = \int J_d . d\overline{S} , J_d = \frac{\partial \overline{D}}{\partial t}$	J
$\overline{E} = -\nabla V$	$\gamma = \alpha + j\beta$	
$\nabla^2 V = 0$	$\mu\varepsilon$ $\left[\int_{0}^{1} \int_{0}^$	
$R = \frac{\ell}{\bar{\sigma}S}$	$\alpha = \omega \sqrt{\frac{\mu \varepsilon}{2}} \left[\sqrt{1 + \left[\frac{\sigma}{\omega \varepsilon} \right]^2} - 1 \right]$	
$I = \int \overline{J} \cdot dS$		
10	$\beta = \omega \sqrt{\frac{\mu \varepsilon}{2}} \sqrt{1 + \left[\frac{\sigma}{\omega \varepsilon}\right]^2} + 1$	

$$\overline{F}_{l} = \frac{\mu I_{1}I_{2}}{4\pi} \oint_{L_{1}L_{2}} \frac{d\overline{U}_{1} \times (d\overline{U}_{2} \times \hat{a}_{R_{21}})}{R_{21}^{2}}$$

$$|\eta| = \frac{\sqrt{\mu/\varepsilon}}{\left[1 + \left(\frac{\sigma}{\omega\varepsilon}\right)^{2}\right]^{\frac{1}{4}}}$$

$$tan 2\theta_{\eta} = \frac{\sigma}{\omega\varepsilon}$$

$$tan \theta = \frac{\sigma}{\omega\varepsilon} = \frac{\overline{J}_{s}}{\overline{J}_{ds}}$$

$$\delta = \frac{1}{\alpha}$$

$$\varepsilon_{0} = 8.854 \times 10^{-12} \text{ Fm}^{-1}$$

$$\mu_{0} = 4\pi \times 10^{-7} \text{ Hm}^{-1}$$

$$\int \frac{dx}{(x^{2} + c^{2})^{3/2}} = \frac{x}{c^{2}(x^{2} + c^{2})^{1/2}}$$

$$\int \frac{xdx}{(x^{2} + c^{2})^{3/2}} = \ln(x + \sqrt{x^{2} \pm c^{2}})$$

$$\int \frac{dx}{(x^{2} + c^{2})^{1/2}} = \ln(x + \sqrt{x^{2} \pm c^{2}})$$

$$\int \frac{xdx}{(x^{2} + c^{2})} = \frac{1}{c} tan^{-1} \left(\frac{x}{c}\right)$$

$$\int \frac{xdx}{(x^{2} + c^{2})} = \frac{1}{2} \ln(x^{2} + c^{2})$$

$$\int \frac{xdx}{(x^{2} + c^{2})^{1/2}} = \sqrt{x^{2} + c^{2}}$$