CONFIDENTIAL

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION (TAKE HOME) SEMESTER II SESSION 2019/2020

COURSE NAME

- ELECTRIC CIRCUIT ANALYSIS II
- COURSE CODE : BEF 12503

8

- PROGRAMME CODE : BEV
- EXAMINATION DATE : JULY 2020
- DURATION : 3 HOURS
- INSTRUCTION
- : ANSWER FIVE (5) QUESTIONS ONLY

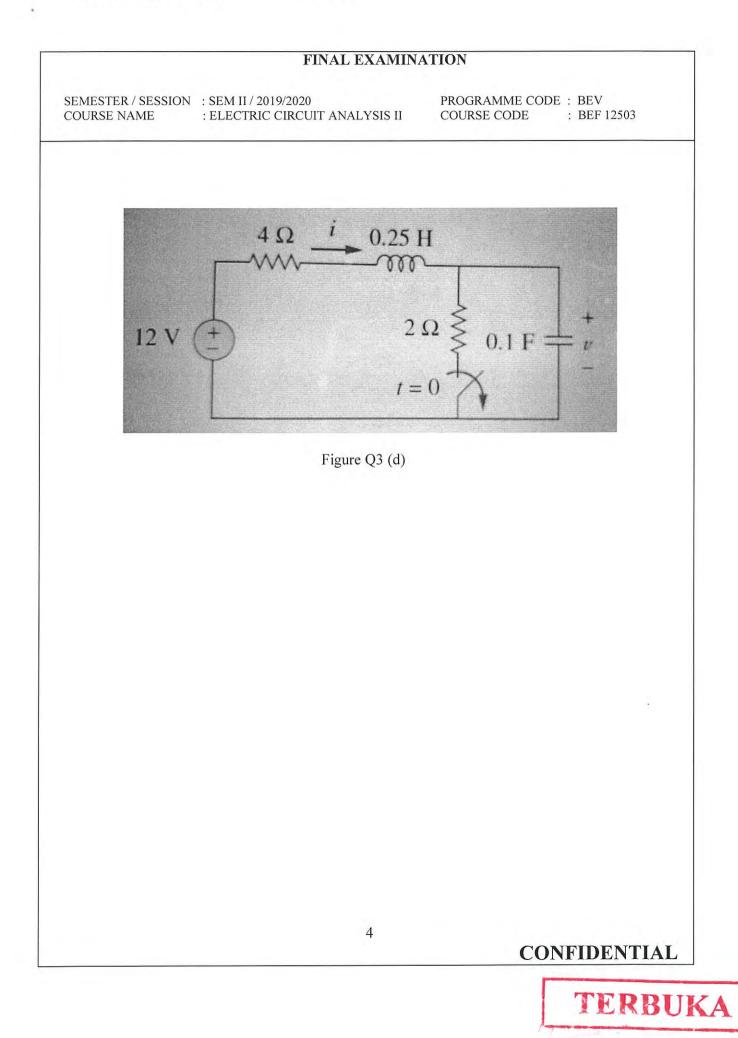
THIS QUESTION PAPER CONSISTS OF FOUR (4) PAGES

Q1	(a)	Describe capacitor with its structure, dielectric, and different units.	
		The second s	2 marks)
	(b)	Compute the Standard Units of capacitance.	
	(in s	· · · · · · · · · · · · · · · · · · ·	3 marks)
	(c)	Summarize any TWO (2) characteristics of capacitors found in datas	2 marks)
	(d)	Calculate the charge stored on a 3-pF capacitor with 20 V across it ar	
	()	find the energy stored in the capacitor.	
			3 marks)
Q2	(a)	Compose differential equation of the first order RC circuit at the initi conditions.	al
			2 marks)
	(b)	Explain the time constant of RC and RL circuits.	2 marks)
	1.1		2 marks)
	(c)	Identify the different types of singularity function (or) switching funct	the second se
			2 marks)
	(d)	Corroborate the response of transient and steady state RC circuit.	
			2 marks)
	(e)	In a first order source free RC circuit, the equivalent Resistance is 4Ω	
		and the capacitor value is 0.1F. Find the time constant, $\boldsymbol{\tau}$.	2
			2 marks)
Q3	(a)	Identify TWO (2) key points in determining the initial conditions in sorder circuit.	econd
			2 marks)
	(b)	Characterize the THREE (3) types of solutions/cases obtained in the sorder circuit from its characteristic equation roots with respect to dam frequencies.	
			3 marks)
	(c)	Summarize the complete solutions for the overdamped, underdamped critically damped cases of step response of a series RLC circuit.	
			3 marks)
	(d)	Analyse a second order RLC circuit in Figure Q3(d), where the switch closed for a long time. It is open at $t = 0$. Find the current flowing thro circuit at $t=0^{-}$.	
			2 marks)
Q4	(a)	Identify THREE (3) steps to analyze the AC circuits.	
			3 marks)
	(b)	Compose the statements of mesh analysis and Thevenin's Theorem.	
			4 marks)
	(c)	Given a sinusoid is $v(t) = 12 \sin(50t + 10^{\circ})$. Analyze the sinusoid to	
		determine the amplitude, phase, period, and frequency.	2 montra)
			3 marks)

CONFIDENTIAL

TERBUKA

Q5	(a)	Corroborate when the maximum average power transfer to the load.	
	()	(1 marks)	
	(b)	Differentiate the power factor and power factor angle.	
	()	(2 marks)	
	(c)	Illustrate the volt ampere reactive, VAR (Q) with respect to different types of loads.	
		(3 marks)	
	(d)	Analyze the average power absorbed by an impedance $z = 30 - j70 \Omega$ when a voltage $V = 120 \angle 0^0$ is applied across it.	
		(4 marks)	
Q6	(a)	Explain the mutual inductance.	
		(2 marks)	
	(b)	Summarize about the dot convention in TWO (2) points.	
		(2 marks)	
	(c)	Corroborate the dot convention of the coupled coils in series connections.	
	. /	(2 marks)	
	(d)	Correlate the coupling coefficient of magnetic coupled circuits with respect to its coils.	
		(2 marks)	


(e) In a magnetically coupled circuit, the inductors L1, 5H and L2, 4H are connected in parallel arrangements having the mutual inductance 2.5H during the conduction period. Determine the coupling coefficient.

(2 marks)

-END OF QUESTIONS -

CONFIDENTIAL TERBUKA

CONFIDENTIAL

