

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION (ONLINE) SEMESTER II SESSION 2019/2020

COURSE NAME

: COMPUTER PROGRAMMING

COURSE CODE

BEJ10102

PROGRAMME :

BEE

EXAMINATION DATE:

JULY 2020

DURATION

3 HOURS

INSTRUCTION :

ANSWER ALL QUESTIONS.

OPEN BOOK EXAMINATION

THIS QUESTION PAPER CONSISTS OF NINE (9) PAGES

CONFIDENTIAL

TERBUKA

BEJ10102

Q1 (a) Analyse the fragment of C++ programming in **Figure Q1(a)**. List four (4) errors contained in this program.

```
float choice;

cout<< "Please enter your choice in integer number: ";

cin>> choice;

switch (choices)

case 1: cout<< "Your choice is Dolgona Coffee" <<endl; break;

case 2: cout<< "Your choice is Cappuccino Coffee" <<endl; break;

case 3: cout<< "Your choice is Americano Coffee" <<endl; break;

case 4: cout<< "Your choice is Espresso Coffee" <<endl; break;

case 5: cout<< "Your choice is Macciato Coffee" <<endl; break;

default 6: cout<< "Your choice is Original Coffee";}
```

Figure Q1(a)

(8 marks)

):	

BEJ10102

	(12 mark
Answer for Q1(b):	

3

CONFIDENTIAL

BEJ10102

Q2 (a) Based on the *while* statement in **Figure Q2(a)**, answer **True (T)** or **False (F)** for (i) to (iv).

```
sular y=1000,
trip=7;
while (trip < 10) {
    salary = salary + trip;
    cout<< "Salary is RM" <<sulary<<endl;
    trip++;
}</pre>
```

Figure Q2(a)

- (i) The while loop body is repeated 4 times.
 (ii) Salary is RM 1007 is the first sentence appears on the screen.
 (iii) The final value of salary is RM 1015.
- (iv) If the initial value of *trip* is changed to *trip*=11, the *while* loop body is executed at least once.

(8 marks)

(b) Write a complete C++ program by using *for* statement to calculate and display a velocity value, as long as the time value is less than or equal to 10. The initial value of time, t is zero (t=0) and incremented by 1 for each repetition. **Figure Q2(b)** shows the pseudocode as a reference.

```
Begin
Set the acceleration value, A=2.537
Set the initial value of velocity, v0=0
For time value, t is less than or equal to 10
calculate velocity, v=A \times t + v0
display the value of v and t
End for display "End the program."
```

Figure Q2(b)

(12 marks)

BEJ10102

Answer for	Q2(b):		
			ļ
			01.

TERBUKA

BEJ10102

(3 marks)		Answer for Q3(a):	
	:	standard header file	
	:	user-defined header file	
uus + 32.0;	is g	double variable. The further further further than the further further than the further than	
(5 marks			
		Answer for Q3(b):	

BEJ10102

(c) Fill in the blanks (number 1 until 12) with correct C++ statements for the program in Figure Q3(c).

	he series and parallel equivalent
	of two resistors
#include <io< th=""><th></th></io<>	
using names	pace std;
1	series (double 2, double 3);
double	series (double2, double3); 4 (5p1,6p2);
int main ()	
{	
double r1, r	
double serie	es_r, parallel_r;
cout<< "En	ter value of resistance r1 (Ohm): ";
cin >> r1;	***
	ter value of resistance r2 (Ohm): ";
cin>>r2;	
	ravias (nl. n2):
series_r - s	veries $(r1, r2)$;
parallel r=	= parallel(r1, r2);
cout<< "Th cout<< "Th 7}	eir series equivalent is: " << series_r << " Ohm" << endl; eir parallel equivalent is: " << parallel_r << " Ohm" << endl; _ 0;
double	8 (double <i>s1</i> , double <i>s2</i>)
{	
	tal_series;
	ies=s1+s2;
return _	;
}	
double para	allel (double10, double11)
{	
	tal_parallel;
total nav	callel=(p1*p2)/(p1+p2);
	12 ;
}	

Figure Q3(c)

(12 marks)

BEJ10102

Q4 (a) How would you illustrate the following declaration?
int test_mark[] = {98, 73, 62, 85};

Answer for Q4(a):

(5 marks)

(b) Examine the following program.

```
#include <iostream>
#include <cstring>
using namespace std;

int main () {
    char MCO1[30];
    char MCO2[50] = "stay safe ";

    cout << "Enter one tagline: ";
    cin.getline(MCO1,30);

    strcat(MCO2, MCO1);
    cout << "MCO tagline: " << MCO2 << endl;
    return 0;
}</pre>
```

Figure Q4(b)(i)

Based on Figure Q4(b)(i), assume the user entered the tagline *stay at home*. In your opinion, do you think the program will able to display the output as shown in Figure Q4(b)(ii)? State a reason for your answer.

Enter one tagline: stay at home
MCO tagline: stay safe stay at home

Figure Q4(b)(ii)

(5 marks)

BEJ10102

Fill in the blanks (nu program in Figure Q4	mber 1 until 12) with correct C++ statements (c).
	in the <i>volts</i> array as the product of elements in the <i>current</i> and <i>resistance</i> arrays.
#include <iostream></iostream>	Tements in the eartern and resistance arrays.
using namespace std;	
//function prototype double <i>calc_volts</i> (double	ble1[10], double2[10], double3[1
int main () {	
double volts [10]={0	$t[10] = \{10.6, 14.8, 13.2, 16.5, 18.6, 9.4, 6.5, 18.3, 12.1, 10\}$
7	_[10]={4, 8.5, 6, 7.3, 9, 15.3, 3, 5.4, 2.9, 4.8};
	6, resistance); //function call
for (int $i=0;7_$;	
cout<<"volt ["<<	<i>i</i> << "]" << " is: " << 8 [<i>i</i>] << endl;
return 0;	
}	
//function definition double 9	(double $v[10]$, double $curr[10]$, double $res[1]$
int <i>i</i> ;	(double /[10], double om/[10], double 102[1
for(int <i>i</i> =0; <i>i</i> <10; <i>i</i> +	+)
v[i] = curr[i] * re	s[i];
return 10 ;	

- END OF QUESTIONS -

TERBUKA