CONFIDENTIAL

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION (OTHER SUMMATIVE ASSESSMENTS) SEMESTER II SESSION 2019/2020

COURSE NAME	:	ANTENNA THEORY AND DESIGN
COURSE CODE	:	BEB 41003
PROGRAMME CODE	:	BEJ
EXAMINATION DATE	:	JULY 2020
DURATION	:	2 WEEKS
INSTRUCTION	:	PLEASE READ THE INSTRUCTION OPEN BOOK EXAMINATION

THIS QUESTION PAPER CONSISTS OF TWO (2) PAGES

CONFIDENTIAL

CONFIDENTIAL

BEB 41003

As a consultant at Microwave Avenue Consultancy, you have been assigned to design a high performance rectangular microstrip patch antenna in the X-band frequency range. You are given three different sets of dielectric materials for this project. Table 1 shows the specifications of the dielectric substrates:

Name of Substrate Material	Dielectric constant (Er)	Dissipation factor (tan δ)	Thickness (mm)
RA-252	2.2	0.0002	1.5
RG-135 FR-4	2.1	0.025	2.4 1.4

Table 1: Specifications of three substrate materials

Based on relevant theories, calculations and CST/HFSS simulations, you are required to design a 4×4 microstrip array antenna. In this work, you should include the following design considerations:

- a) Describe important methodology of the 4 x 4 microstrip array design for a specific application.
 (10 marks)
- b) Apply the transmission line model to correlate the relationship between the loss and bandwidth performance of the 4 x 4 microstrip array constructed on 3 different sets of dielectric materials. (15 marks)
- c) Compare the gain performance between a single rectangular microstrip patch and a 4 x 4 microstrip array.
 (10 marks)
- d) Explain the chosen feeding technique and impedance matching criteria with the support of calculations and simulations. (7 marks)
- e) Analyze the radiation patterns of the array antenna both in polar and rectangular plots based on the three substrate materials.
 (8 marks)

A final report with a comprehensive analysis should be submitted by 14th June 2020 before a final online presentation session.

-END OF QUESTIONS-

2

CONFIDENTIAL

TERBUKA