

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION (ONLINE) **SEMESTER II SESSION 2019/2020**

COURSE NAME

CIVIL ENGINEERING

MATHEMATICS I

COURSE CODE

: BFC13903

PROGRAMME CODE : BFF

EXAMINATION DATE : JULY 2020

DURATION

: 6 HOURS

INSTRUCTION

: ANSWER ALL QUESTIONS

THIS QUESTION PAPER CONSISTS OF NOTIFICES KA

CONFIDENTIAL

BFC13903

Q1 (a) A function h is defined by

$$\Box(x) = \begin{cases} ax - 11 & x \le -2 \\ bx^3 + c & -2 < x \le 1 \\ 4 - x^2 & x > 1 \end{cases}$$

(i) Find the value of a if $\lim_{x \to -2} h(x) = -15$

(2 marks)

(ii) Determine the value of b and c if $\lim_{x\to -2} \Box(x)$ and $\lim_{x\to 1} \Box(x)$ exist.

(3 marks)

(b) Differentiate $y = \cot x$ with respect to x by using suitable method.

(4 marks)

(c) The parametric equations of a curve are given by x = 3t + 8 and $y = t - 3t^2$. Find $\frac{dy}{dx}$ in terms of x.

(4 marks)

- (d) Given the implicit function $xe^y + ylnx = 5$, find $\frac{dy}{dx}$ in terms of x and y. (7 marks)
- Q2 (a) Find the set of values of x for which the graph of the function $f(x) = 2x^3 12x + 11$
 - (i) Is concave upwards.

(2 marks)

(ii) Is concave downwards.

(3 marks)

(b) The given **FIGURE Q2** (b) shows a trapezium ABCD such that DA = AB = BC = 10cm and $\angle DAP = \angle CBQ = \theta$ radians. Show that the area of the trapezium, L cm², is given by $L = \cos \theta$ (1 + $\sin \theta$). Examine the value of θ such that the area of the trapezium is a maximum and calculate the maximum area of the trapezium.

(15 marks)

FIGURE Q3 (a) shows a combined solid which consists of a cuboid surmounted by a semi-cylinder with a common face PQRS. The breadth and the length of the cuboid are x cm and 2x cm respectively and its height is y cm. Given that the total surface area of this combined solid is 9600 cm^2 , show that $y = \frac{1}{24x} \left[38400 - (8 + 5\pi)x^2 \right]$. If the volume of the combined solid is V cm³, show that $V = \frac{1}{6} \left[19200x - (4 + \pi)x^3 \right]$. Find the value of x, in terms of π , when V is a maximum and show

CONFIDENTIAL

CONFIDENTIAL

BFC13903

that V is a maximum. Calculate its maximum volume, stating your answer correct to the nearest integer.

(10 marks)

(b) On the same coordinate axes, sketch the graph of $y = e^x$ and $y = 3 + 4e^{-x}$. If the region bounded by the curves and the y-axis is revolved through 2π radians about the x-axis, show that the volume of the solid generated is $(9 \ln 4 + 18)\pi$ units³.

(10 marks)

Q4 (a) On the same coordinate axes, sketch the graphs of the curve $y^2 = 9(x + 1)$ and the straight line y = -x + 9. Hence, calculate the area of the region bouded by the curve, the staright line and y-axis.

(10 marks)

(b) On the same coordinate axes, sketch the graphd of hte curve $\frac{x^2}{9} + \frac{y^2}{4} = 1$ and the straight line 3y = -2x + 6. Hence, analyze the volume of the solid generated when the region bounded by the curve and the straight line is rotated through 2π radians about the y-axis.

(10 marks)

Q5 (a) Differentiate $\cot^{-1} \sqrt{x}$ respect to x

(4 marks)

(b) Evaluate $\int \frac{dx}{\sqrt{4x^2-2}}, x > \frac{3}{2}$

(4 marks)

(c) Express $\int \frac{x+1}{\sqrt{1-x^2}} dx$ in the form of $\frac{A \frac{d}{dx}(1-x^2)+B}{\sqrt{1-x^2}}$, where A and B are constants. Hence,

evaluate $\int_0^{1/2} \frac{x+1}{\sqrt{1-x^2}} dx.$

(12 marks)

- END OF QUESTIONS -

SEMESTER/SESSION : SEM II / 2019/2020

PROGRAMME CODE: 1 BFF

COURSE NAME

: CIVIL ENGINEERING MATHEMATICS I COURSE CODE : BFC13903

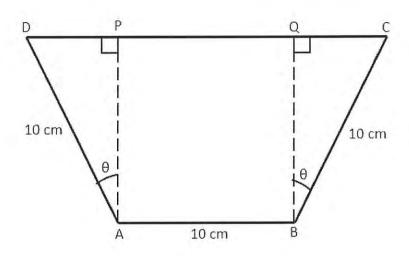


FIGURE Q2 (b)

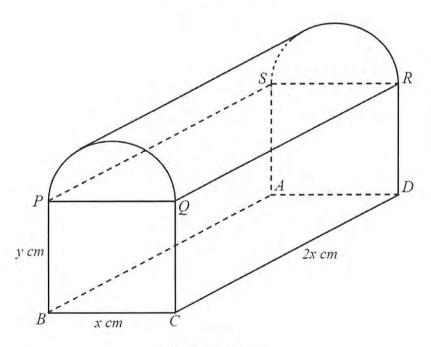


FIGURE Q3 (a)

SEMESTER/SESSION : SEM II / 2019/2020 PROGRAMME CODE : 1 BFF

COURSE NAME : CIVIL ENGINEERING MATHEMATICS I COURSE CODE : BFC13903

Differentiation Rules	Indefinite Integrals
$\frac{d}{dx}[k] = 0$	$\int k dx = kx + C$
$\frac{d}{dx}\left[x^n\right] = nx^{n-1}$	$\int x^n dx = \frac{x^{n+1}}{n+1} + C, n \neq -1$
$\frac{d}{dx} \left[\ln x \right] = \frac{1}{x}$	$\int \frac{dx}{x} = \ln x + C$
$\frac{d}{dx}[\cos x] = -\sin x$	$\int \sin x dx = -\cos x + C$
$\frac{d}{dx}[\sin x] = \cos x$	$\int \cos x dx = \sin x + C$
$\frac{d}{dx}[\tan x] = \sec^2 x$	$\int \sec^2 x dx = \tan x + C$
$\frac{d}{dx}\left[\cot x\right] = -\csc^2 x$	$\int \csc^2 x dx = -\cot x + C$
$\frac{d}{dx}[\sec x] = \sec x \tan x$	$\int \sec x \tan x dx = \sec x + C$
$\frac{d}{dx}[\csc x] = -\csc x \cot x$	$\int \csc x \cot x dx = -\csc x + C$
$\frac{d}{dx}\left[e^{x}\right] = e^{x}$	$\int e^x dx = e^x + C$
$\frac{d}{dx}[\cosh x] = \sinh x$	$\int \sinh x dx = \cosh x + C$
$\frac{d}{dx}[\sinh x] = \cosh x$	$\int \cosh x dx = \sinh x + C$
$\frac{d}{dx}[\tanh x] = \operatorname{sech}^2 x$	$\int \operatorname{sech}^2 x dx = \tanh x + C$
$\frac{d}{dx}\left[\coth x\right] = -\operatorname{cosech}^2 x$	$\int \operatorname{cosech}^2 x dx = -\coth x + C$
$\frac{d}{dx}[\operatorname{sech} x] = -\operatorname{sech} x \tanh x$	$\int \operatorname{sech} x \tanh x dx = -\operatorname{sech} x + C$
$\frac{d}{dx}\left[\operatorname{cosech} x\right] = -\operatorname{cosech} x \operatorname{coth} x$	$\int \operatorname{cosech} x \operatorname{coth} x dx = -\operatorname{cosech} x + C$

SEMESTER/SESSION : SEM II / 2019/2020 PROGRAMME CODE : 1 BFF

COURSE NAME : CIVIL ENGINEERING MATHEMATICS I COURSE CODE : BFC13903

Trigonometric	Hyperbolic	
$\cos^2 x + \sin^2 x = 1$	$\sinh x = \frac{e^x - e^{-x}}{2}$	
$1 + \tan^2 x = \sec^2 x$	$\cosh x = \frac{e^x + e^{-x}}{2}$	
$\cot^2 x + 1 = \csc^2 x$	$\cosh^2 x - \sinh^2 x = 1$	
$\sin 2x = 2\sin x \cos x$	$1 - \tanh^2 x = \sec h^2 x$	
$\cos 2x = \cos^2 x - \sin^2 x$	$\coth^2 x - 1 = \csc h^2 x$	
$\cos 2x = 2\cos^2 x - 1$	$\sinh 2x = 2\sinh x \cosh x$	
$\cos 2x = 1 - 2\sin^2 x$	$\cosh 2x = \cosh^2 x + \sinh^2 x$	
$\tan 2x = \frac{2\tan x}{1 - \tan^2 x}$	$\cosh 2x = 2\cosh^2 x - 1$	
$\sin(x \pm y) = \sin x \cos y \pm \cos x \sin y$	$\cosh 2x = 1 + 2\sinh^2 x$	
$\cos(x \pm y) = \cos x \cos y \mp \sin x \sin y$	$\tanh 2x = \frac{2 \tanh x}{1 + \tanh^2 x}$	
$\tan(x \pm y) = \frac{\tan x \pm \tan y}{1 \mp \tan x \tan y}$	$\sinh(x \pm y) = \sinh x \cosh y \pm \cosh x \sinh y$	
$2\sin x \cos y = \sin(x+y) + \sin(x-y)$	$\cosh(x \pm y) = \cosh x \cosh y \pm \sinh x \sinh y$	
$2\sin x \sin y = -\cos(x+y) + \cos(x-y)$	$\tanh(x \pm y) = \frac{\tanh x \pm \tanh y}{1 + \tanh x \tanh y}$	
$2\cos x\cos y = \cos(x+y) + \cos(x-y)$	Inverse Hyperbolic	
Logarithm	$\sinh^{-1} x = \ln\left(x + \sqrt{x^2 + 1}\right), \text{any } x$	
$a^x = e^{x \ln a}$	$\cosh^{-1} x = \ln\left(x + \sqrt{x^2 - 1}\right), \qquad x \ge 1$	
$\log_a x = \frac{\log_b x}{\log_b a}$	$\tanh^{-1} x = \frac{1}{2} \ln \left(\frac{1+x}{1-x} \right), -1 < x < 1$	

SEMESTER/SESSION : SEM II / 2019/2020

PROGRAMME CODE: 1 BFF

COURSE NAME : CIVIL ENGINEERING MATHEMATICS I COURSE CODE : BFC13903

	n of Inverse Functions	
у	$\frac{dy}{dx}$	
sin⁻¹ u	$\frac{dx}{\frac{1}{\sqrt{1-u^2}}} \frac{du}{dx}, u < 1$ $-\frac{1}{\sqrt{1-u^2}} \frac{du}{dx}, u < 1$	
$\cos^{-1} u$	$-\frac{1}{\sqrt{1-u^2}}\frac{du}{dx}, \qquad u < 1$	
tan ⁻¹ u	$\frac{1}{1+u^2}\frac{du}{dx}$	
$\cot^{-1} u$	$-\frac{1}{1+u^2}\frac{du}{dx}$	
sec ⁻¹ u	$\frac{1}{ u \sqrt{u^2-1}}\frac{du}{dx}, \qquad u > 1$	
cosec ⁻¹ u	$-\frac{1}{ u \sqrt{u^2-1}}\frac{du}{dx}, \qquad u > 1$	
$\sinh^{-1} u$	$\frac{1}{\sqrt{u^2+1}}\frac{du}{dx}$	
$\cosh^{-1} u$	$\frac{1}{\sqrt{u^2 - 1}} \frac{du}{dx}, \qquad u > 1$	
$\tanh^{-1} u$	$\frac{1}{u} \frac{du}{dt}$, $ u < 1$	
coth⁻¹ u	$-\frac{1}{1-u^2}\frac{du}{dx}, \qquad u > 1$	
sech ⁻¹ u	$ \frac{1-u^2 dx}{-\frac{1}{1-u^2}} \frac{du}{dx}, u > 1 $ $ -\frac{1}{u\sqrt{1-u^2}} \frac{du}{dx}, 0 < u < 1 $ $ -\frac{1}{ u \sqrt{1+u^2}} \frac{du}{dx}, u \neq 0 $	
cosech ⁻¹ u	$-\frac{1}{ u \sqrt{1+u^2}}\frac{du}{dx}, u \neq 0$	

SEMESTER/SESSION : SEM II / 2019/2020

PROGRAMME CODE: 1 BFF

COURSE NAME : CIVIL ENGINEERING MATHEMATICS I COURSE CODE : BFC13903

Integration of Inverse Func	tions
$\int \frac{dx}{\sqrt{a^2 - x^2}} = \sin^{-1} \left(\frac{x}{a}\right) + C$	
$\int \frac{dx}{a^2 + x^2} = \frac{1}{a} \tan^{-1} \left(\frac{x}{a} \right) + 6$	C
$\int \frac{dx}{ a \sqrt{a^2 - x^2}} = \frac{1}{a} \sec^{-1} \left(\frac{x}{a}\right).$	+C
$\int \frac{dx}{\sqrt{x^2 + a^2}} = \sinh^{-1} \left(\frac{x}{a}\right) + C,$	a > 0
$\int \frac{dx}{\sqrt{x^2 - a^2}} = \cosh^{-1}\left(\frac{x}{a}\right) + C,$	x > a
$\int \frac{dx}{x^2 - a^2} = \begin{cases} \frac{1}{a} \tanh^{-1} \left(\frac{x}{a}\right) + C, \\ \frac{1}{a} \coth^{-1} \left(\frac{x}{a}\right) + C, \end{cases}$	x < a
$\int \frac{1}{x^2 - a^2} - \frac{1}{a} \coth^{-1} \left(\frac{x}{a}\right) + C,$	x > a
$\int \frac{dx}{x\sqrt{a^2 - x^2}} = -\frac{1}{a}\operatorname{sech}^{-1}\left(\frac{x}{a}\right) + C,$	0 < x < a
$\int \frac{dx}{x\sqrt{a^2 + x^2}} = -\frac{1}{a}\operatorname{cosech}^{-1}\left(\frac{x}{a}\right) + C,$	0 < x < a

SEMESTER/SESSION : SEM II / 2019/2020 PROGRAMME CODE: 1 BFF

: CIVIL ENGINEERING MATHEMATICS I COURSE CODE : BFC13903

Formulae

Area between two curves

Case 1- Integrating with respect to x: $A = \int_a^b [f(x) - g(x)] dx$ Case 2- Integrating with respect to y: $A = \int_c^d [f(y) - g(y)] dy$

Area of surface of revolution

Case 1- Revolving the portion of the curve about x-axis: $S = 2\pi \int_a^b y \sqrt{1 + \left(\frac{dy}{dx}\right)^2} dx$

Case 2- Revolving the portion of the curve about y-axis: $S = 2\pi \int_{c}^{d} x \sqrt{1 + \left(\frac{dx}{dy}\right)^2} dy$

Parametric curve- Revolving the curve about x-axis: $S = 2\pi \int_a^b y \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt$

Parametric curve- Revolving the curve about y-axis: $S = 2\pi \int_{c}^{d} x \sqrt{\left(\frac{dx}{dt}\right)^{2} + \left(\frac{dy}{dt}\right)^{2}} dt$

Arc length

x-axis:
$$L = \int_a^b \sqrt{1 + \left(\frac{dy}{dx}\right)^2} dx$$

y-axis:
$$L = \int_{c}^{d} \sqrt{1 + \left(\frac{dx}{dy}\right)^2} dy$$

Parametric curve: $L = \int_a^b \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt$

Curvature

Curvature,
$$K = \frac{\left[\frac{d^2y}{dx^2}\right]}{\left[1 + \left(\frac{dy}{dx}\right)^2\right]^{3/2}}$$

Radius of curvature, $\rho = \frac{1}{\nu}$

Curvature of parametric curve

Curvature,
$$K = \frac{|\dot{x}\ddot{y} - \dot{y}\ddot{x}|}{(\dot{x}^2 + \dot{y}^2)^{3/2}}$$

Radius of curvature, $\rho = \frac{1}{\kappa}$