

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION (ONLINE) SEMESTER II **SESSION 2019/2020**

COURSE NAME

: CIVIL ENGINEERING MATERIALS

COURSE CODE

: BFC10502

PROGRAMME CODE : BFF

EXAMINATION DATE : JULY 2020

DURATION

: 4 HOURS

INSTRUCTION

: ANSWER ALL QUESTIONS

THIS QUESTION PAPER CONSISTS OF EIGHT (8) PAGES

CONFIDENTIAL **TERBUKA**

CONFIDENTIAL

BFC10502

Q1 (a) Cement paste is a mixture of water and cement which hardened through hydration process. It is the main binder concrete matrix. Briefly discuss the importance of water cement ratio in concrete mixture.

(5 marks)

- (b) You are assigned to initiate a construction site in a highly humid and highland area. One of your task is to provide temporary storage for cement bags for your construction site. Discuss the major threat from the surrounding environment to the quality of stored cement and propose cautious measures to ensure the quality of the cement remained.

 (10 marks)
- (c) Illustrate the dimensions of your proposed temporary cement storage shelter. (10 marks)
- Q2 (a) Most of offshore structures such as top module and jacket were constructed by using steel members. Explain **THREE** (3) reasons of using steel in offshore structure.

 (6 marks)
 - (b) National Glulam Timber Board of Malaysia appointed you as consultant to promote the use of timber in Malaysia. One of your task is to produce a brochure of the advantages of Malaysian timber in construction industry. Propose **FIVE** (5) main points to be included in the brochure.

(10 marks)

- (c) As a consultant engineer that working for a developer, you are required to propose a construction material for a double stories bungalow. The bungalow is to be constructed facing an open beach and next to a high speed railway train line.
 - (i) Explain **TWO** (2) environmental effects to be considered in proposing construction material for the bungalow.

(4 marks)

(ii) Propose suitable **TWO** (2) construction materials based on environmental effects mentioned in Q2(c)(i). Justify your construction materials selection based on durability factor and long term integrity effect on structure.

(5 marks)

Q3 (a) The quality of fresh and hardened concrete are influenced by physical properties of aggregate. Define FIVE (5) physical properties of aggregate.

(5 marks)

(b) Name and briefly explain the chemical compound of Portland cement based on the abbreviation given.

- (i) C_2S
- (ii) C₃S
- (iii) C₃A
- (iv) C₄AF

(8 marks)

(c) Table Q3(c) shows raw data for aggregates sieve analysis datasheet. Calculate and complete the sieve analysis datasheet in Table Q3(c). Rewrite Table Q3(c) in your answer script.

(12 marks)

Q4 (a) You are assigned to conduct concrete mixing in the laboratory. Prior to concrete mixing, you need to calculate the quantities of cement, water, fine aggregate, and coarse aggregate per trial mix of 0.08 m³. Calculate mix design in the DoE Concrete Mix Design Form that is suitable for a normal weight concrete with no admixture. The following information should be used for the mix design. Please rewrite the essential values from DoE form in your answer script.

Target mean compressive strength = 35 MPa at 28 days

Cement strength class 42.5

Defective rate = 10% (k=1.28)

Standard deviation = 8 N/mm²

Slump required = 10-30 mm

Max. Aggregate size = 20 mm

Specific gravity of aggregates = 2.65

Coarse aggregate CRUSHED

Fine aggregate UNCRUSHED (38% pass 600 micros)

Maximum allowable free-water/cement ratio = 0.55

Minimum allowable cement content = 275 kg/m^3 .

(25 Marks)

- END OF QUESTIONS -

SEMESTER/SESSION : SEM II / 2019/2020

PROGRAMME CODE: 1 BFF

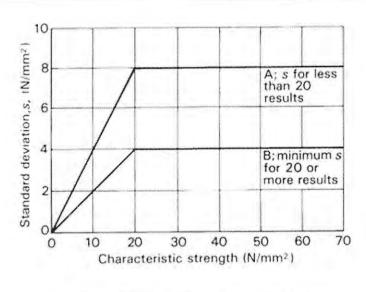
COURSE NAME : CIVIL ENGINEERING MATERIALS COURSE CODE : BFC10502

TABLE Q3(c): Sieve Analysis Datasheet

BS 410 Sieve (mm)	Weight of Aggregate Retained (g)	Percentage Retained (%)	Cumulative Percentage Retained (%)	Cumulative Percentage Passing (%)
5.00	0	, , ,		
2.36	31			
1.16	41			
0.60	43			
0.30	45			
0.15	34			
Pan	6			

SEMESTER/SESSION

: SEM II / 2019/2020


COURSE NAME

: CIVIL ENGINEERING MATERIALS

PROGRAMME CODE: 1 BFF

COURSE CODE

: BFC10502

Relationship between standard deviation and characteristic strength

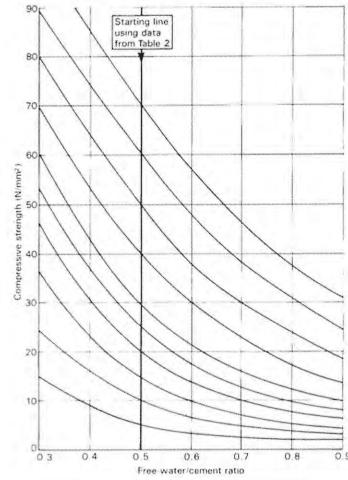


Figure 4 Relationship between compressive strength and free-water/cement ratio

SEMESTER/SESSION : SEM II / 2019/2020

PROGRAMME CODE: 1 BFF

COURSE NAME

: CIVIL ENGINEERING MATERIALS

COURSE CODE : BFC10502

Cement	Type of	Comp	hs (N/mm		
strength	coarse	Age (days)			
class	aggregate	3	7	28	91
42.5	Uncrushed	22	30	42	49
	Crushed	27	36	49	56
52 5	Uncrushed	29	37	48	54
	Crushed	34	43	55	61

Throughout this publication concrete strength is expressed in the units N/mm*

Table 3 Appr to give variou:			ntents (k	g/m³) r	equired
Slump (mm)	s ievela ol woll	0-10	10-30	30-60	60-180
Vebe time (s)		>12	6-12	3-6	0-3
Maximum size					
of aggregate	Type of				
(mm)	aggregate				
10	Uncrushed	150	180	205	225
	Crushed	180	205	230	250
20	Uncrushed	135	160	180	195
	Crushed	170	190	210	225
40	Uncrushed	115	140	160	175
	Crushed	155	175	190	205

¹ N/mm² = 1 MN/m² = 1 MPa. (N = newton; Pa = pascal.)

SEMESTER/SESSION : SEM II / 2019/2020

PROGRAMME CODE: 1 BFF

COURSE NAME

: CIVIL ENGINEERING MATERIALS

COURSE CODE

: BFC10502

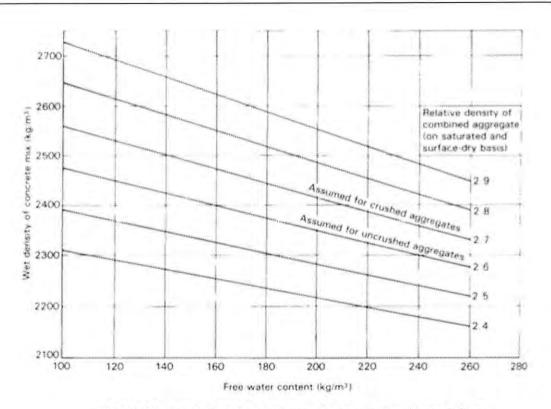


FIGURE 5 Relationship between concrete density and free-

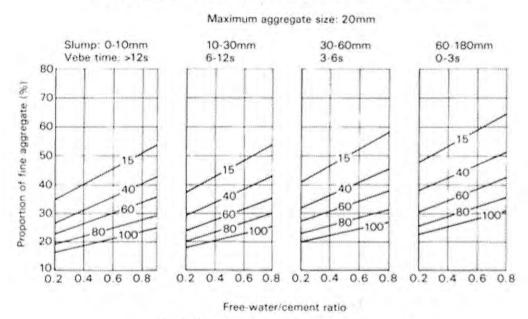


FIGURE 6 Proportion of fine aggregate

Name:		
Name:		

* * . * * * * * * * * * * * * * * * * *		
Matric No:		
1,1000110 1.0.		

Concrete mix design form

Stage	Iten	n	Reference or calculation	Values		-1- (***********************************	
1	1.1	Characteristic strength	Specified	Proportion defe	ctive	N/mm² at	da
	1.2	Standard deviation	Fig 3			N/mm ² or no data	N/m
	1.3	Margin	C1 or Specified	(k =)	×=	N/m
	1.4	Target mean strength	C2			+=	N/m
	1.5	Cement strength class	Specified	42.5/52.5			
	1.6	Aggregate type: coarse Aggregate type: fine		Crushed/uncrus Crushed/uncrus			
	1.7	Free-water/cement ratio	Table 2, Fig 4	Tomas and the second],, ,,	
	1.8	Maximum free-water/ cement ratio	Specified			Use the lower valu	e [
2	2.1	Slump or Vebe time	Specified	Slump		mm or Vebe time	*****************
	2.2	Maximum aggregate size	Specified				r
	2.3	Free-water content	Table 3				kg/
3	3.1	Cement content	СЗ		+	=	kg/
,	3.2	Maximum cement content	Specified				
	3.3	Minimum cement content	Specified				
				use 3.1 if \leq 3.2 use 3.3 if $>$ 3.1			kg/
	3.4	Modified free-water/cement ra	tio				•••
4	4.1	Relative density of aggregate (SSD)		***************************************		known/assumed	
	4.2	Concrete density	Fig 5				kg,
	4.3	Total aggregate content	C4			- Januaryani) II	= kg/
5	5.1	I Grading of fine aggregate Percentage pas		ing 600 μm sieve			
	5.2	Proportion of fine aggregate	Fig 6	**************			
	5.3	Fine aggregate content	0.5	f	×	=	kg/
	5.4	Coarse aggregate content	C5	{		=	kg/
					Fine aggregate	Coarse aggrega	10 W. L

Items in italics are optional limiting values that may be specified (see Section 7).

Concrete strength is expressed in the units N/mm². 1 N/mm² = 1 MN/ m^2 = 1 MPa. (N = newton; Pa = pascal.)

The internationally known term 'relative density' used here is synonymous with 'specific gravity' and is the ratio of the mass of a given volume of substance to the mass of an equal volume of water. SSD = based on the saturated surface-dry condition.

