

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION (ONLINE) SEMESTER II SESSION 2019/2020

COURSE NAME	:	ADVANCED TRAFFIC ENGINEERING
COURSE CODE	:	BFT40503
PROGRAMME CODE	:	BFF
EXAMINATION DATE	:	JULY 2020
DURATION	:	6 HOURS
INSTRUCTION	1	ANSWER ALL QUESTIONS

THIS QUESTION PAPER CONSISTS OF TWELVE (12) PAGES

CONFIDENTIAL

TERBUKA

Q1 (a) Name **TWO (2)** conditions or scenarios on a highway that can create 'shock waves' phenomenon in the traffic stream.

(2 marks)

- (b) The southbound approach of a signalised intersection carries a flow of 1000 veh/h/ln at a velocity of 50 km/h. The duration of the red signal indication for this approach is 15 sec. If the saturation flow is 2000 veh/h/ln with a density of 75 veh/ln, the jam density is 150 veh/km. With the aid of FIGURE Q1(b):
 - (i) Calculate the length of the queue at the end of the red phase.

(6 marks)

(ii) Examine the speed of backward recovery wave velocity. (2 marks)

(iii) Analyse the maximum queue length.

(2 marks)

(iv) Estimate the time it takes for the queue to dissipate after the end of the red indication.

(4 marks)

(c) A gap between two vehicles is one of the most important factor of a driver need to consider in making any manoeuvres on roadway. Explain THREE (3) important measures that involve the concept of gap acceptance.

(9 marks)

(a) Explain **TWO (2)** roles of road hierarchy in a road network and land use planning.

(4 marks)

(b) 'Mobility' refers to the movement of people and goods, meanwhile 'accessibility' refers to the ability to reach desired goods, services, activities and destinations. Mobility recognises both automobiles and transit modes. However, mobility tends to give less attention on non-motorised modes (NMN) or land use factors effects on the accessibility. Do you agree with this claim? Explain FIVE (5) reasons to support your answer.

(15 marks)

(c) On 18th March 2020, Malaysia Government has instructed Malaysian to follow the Movement Control Order (MCO) due to the uncontrolled spreading of COVID-19 virus worldwide. Therefore, this MCO has affected many aspects of individuals' life routines. One of the aspect is from transportation and travel perspectives. Then, on the 4th May 2020, the government introduces Conditional Movement Control Order (CMCO) in

CONFIDENTIAL

TERBL

Q2

which some organisations are open to operate, resulting in many travels being made for various purposes including for working purposes.

Discuss **THREE (3)** Traffic Management Strategies (TMS) under the Work-Schedule Management Technique that has been recommended by the government in order to ensure the good traffic flow and also to control the spreading of the COVID-19 virus.

(6 marks)

Q3 The layout and traffic demand, in passenger car unit per hour (pcu/hr), of a four-leg intersection that is to be upgraded to a signalised intersection using a 4-phased signal system are shown in FIGURE Q3. The saturation flows and pedestrian volumes for the four approaches are provided in Table Q3. The following information is also given:

All red interval (<i>R</i>)	$= 2 \sec \theta$
Yellow interval per phase (τ)	=4 sec
Lost time per phase (l)	= 3 sec
Desired critical volume-capacity ratio (X_c)	= 0.85
Effective pedestrian crosswalk width (W_E)	= 2.5 m
Pedestrian crosswalk length (L)	= 15 m
Average pedestrian speed (S_P)	= 1.24 m/s

(a) Propose a suitable cycle time (*C*) using the methodology recommended by Highway Capacity Manual (HCM).

(13 marks)

(b) Determine the actual green time (G_a) for each phase.

(4 marks)

(c) Examine whether the minimum green times required for pedestrian crossing (G_p) are sufficient or not.

(8 marks)

Q4 (a) The performance of a 1.5 km of divided four-lane principal arterial with two signalised intersections at spacing of 800 m and 600 m is analysed. The green times are 35 sec and 40 sec respectively. The following information is provided and also refer to Table Q4(a)(i) to Table Q4(a)(v):

Speed limit= 70 km/hTraffic volume (v)= 1095 veh/hSaturation flow (s)= 1,950 pc/h/lnSignal type= PretimedArrival type= Type 3Initial queue delay (d3) $= 0 \sec$

CONFIDENTIAL

Cycle length (C)= 120 secAnalysis period (T)= 0.25 hours

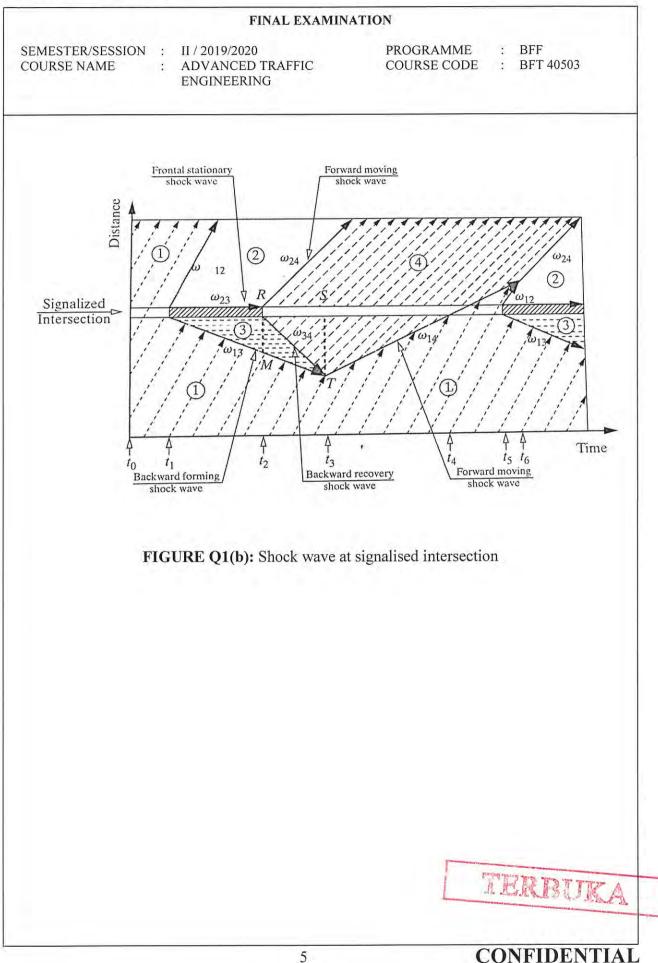
(i) Determine the class and free flow speed of the arterial.

(3 marks)

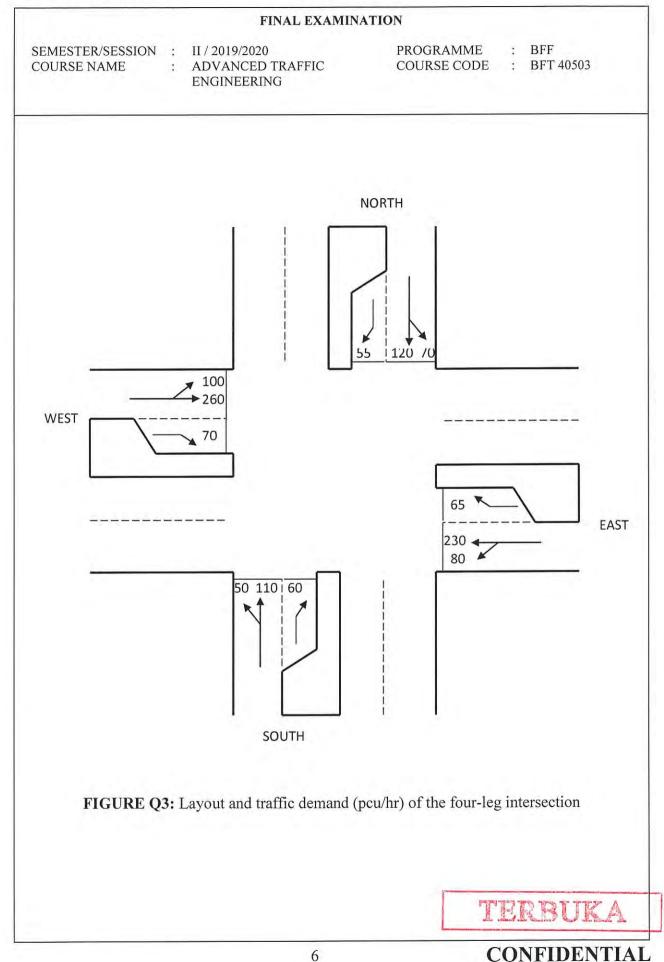
(ii) Calculate the capacity (c), degree of saturation (X) and running time (T_R) for each segment.

(10 marks)

(b) Geographic Information System (GIS) has a great potential in transportation system management. Discuss how GIS can be used to improve the quality and security of public transport service in Malaysia. Explain any THREE (3) related examples to support your answer.


(12 marks)

- END OF QUESTIONS -


3 . j. 44

5

in st

FINAL EXAMINATION

SEMESTER/SESSION : COURSE NAME :

II / 2019/2020 ADVANCED TRAFFIC ENGINEERING

PROGRAMME

: BFF COURSE CODE : BFT 40503

Table Q3: Saturation flows and pedestrian volumes on the approaches

Phase	1		2		3		4	
Approach	We	st	East		North		South	
Movement	Through + Left	Right	Through + Left	Right	Through + Left	Right	Through + Left	Right
Saturation Flow ^a	1860	1070	1790	1090	1670	1100	1730	1060
Number of Pedestrians Crossing ^b	38	3	33		30		24	

Note:

a The unit for saturation flow is passenger car unit/hour .b The unit for number of pedestrians crossing is pedestrians/interval/direction.

1.4

FINAL EXAMINATION

SEMESTER/SESSION : II / 2019/2020 COURSE NAME

: ADVANCED TRAFFIC ENGINEERING

PROGRAMME : BFF COURSE CODE : BFT 40503

Table Q4(a)(i): Urban street class based on functional and design categories (HCM, 2000)

	Functional Category					
Design Category	Principal Arterial	Minor Arterial				
High-Speed	1	N/A				
Suburban	11					
Intermediate	11	III or IV				
Urban	III or IV	IV				

Table Q4(a)(ii): Functional and design categories (HCM, 2000)

	Functional Category						
Criterion	Princip	al Arterial	Minor Arterial				
Mobility function	Very important		Important				
Access function	Very minor		Substantial				
Points connected	Freeways, important traffic generators	activity centers, major	Principal arterials				
Predominant trips served		between major points entering, leaving, and the city	Trips of moderate length within relatively small geographical areas				
		Design	Category				
Criterion	High-Speed Suburban		Intermediate	Urban			
Driveway/access density	Very low density	Low density	Moderate density	High density			
Arterial type	Multilane divided; undivided or two-lane with shoulders	Multilane divided; undivided or two-lane with shoulders	Multilane divided or undivided; one- way, two-lane	Undivided one-way, two-way, two or more lanes			
Parking	No	No	Some	Significant			
Separate left-turn Ianes	Yes	Yes	Usually	Some			
Signals/km	0.3-1.2	0.6-3.0	2-6	4-8			
Speed limit	75–90 km/h 65–75 km/h		50-65 km/h	40–55 km/h			
Pedestrian activity	Very little	Little	Some	Usually			
Roadside development	Low density	Low to medium density	Medium to moderate density	High density			

TERB CONFIDENTIAL

. . ?

FINAL EXAMINATION

SEMESTER/SESSION : II / 2019/2020 COURSE NAME :

ADVANCED TRAFFIC ENGINEERING

PROGRAMME

: BFF COURSE CODE : BFT 40503

Table Q4(a)(iii): Urban street LOS by class (HCM, 2000)

Urban Street Class	I	11	11	IV
Range of free-flow speeds (FFS)	90 to 70 km/h	70 to 55 km/h	55 to 50 km/h	55 to 40 km/h
Typical FFS	80 km/h	65 km/h 55 km/h		45 km/h
LOS		Average Travel	Speed (km/h)	
Α	> 72	> 59	> 50	> 41
В	> 56-72	> 46-59	> 39–50	> 32-41
C	> 40–56	> 33-46	> 28-39	> 23-32
D	> 32-40	> 26-33	> 22-28	> 18–23
E	> 26-32	> 21-26	> 17-22	> 14–18
F	≤ 26	≤ 21	≤ 17	≤ 14

Table Q4(a)(iv): Relationship between arrival type and platoon ratio (HCM, 2000)

Arrival Type	e Range of Platoon Ratio (R _p) Default Value (R _p)		Progression Quality
1	≤ 0.50	0.333	Very poor
2	> 0.50-0.85	0.667	Unfavorable
3	> 0.85–1.15	1.000	Random arrivals
4	> 1.15–1.50	1.333	Favorable
5	> 1.50-2.00	1.667	Highly favorable
6	> 2.00	2.000	Exceptional

FINAL EXAMINATION

SEMESTER/SESSION : COURSE NAME

1

II / 2019/2020 ADVANCED TRAFFIC ENGINEERING

PROGRAMME COURSE CODE

BFF 2 BFT 40503 15

Table Q4(a)(v): Segment running time per kilometer (HCM, 2000)

Urban Street Class		1			11		1			IV	
FFS (km/h)	90ª	80 ^a	70 ^a	70 ^a	65 ^a	55 ^a	55 ^a	50 ^a	55 ^a	50 ^a	40 ^a
Average Segment Length (m)				Runn	ing Tim	e per Kilo	ometer (s/km)			
100	b	b	b	b	b	b		6	-	129	159
200	b	b	b	b	b	b	88	91	97	99	125
400	59	63	67	66	68	75	75	78	77	81	96
600	52	55	61	60	61	67	d	d	d	d	d
800	45	49	57	56	58	65	d	d	d	d	d
1000	44	48	56	55	57	65	đ	d	d	d	d
1200	43	47	54	54	57	65	đ	d	d	d	d
1400	41	46	53	53	56	65	d	d	d	d	d
1600	40 ^c	45¢	51¢	51¢	55c	65 ^c	d	d	d	d	d

Notes:

a. It is best to have an estimate of FFS. If there is none, use the table above, assuming the following default values: For vh)

Class	FFS (km
1	80
11	65
111	55
IV	45

b. If a Class I or II urban street has a segment length less than 400 m, (a) reevaluate the class and (b) if it remains a distinct segment, use the values for 400 m.

c. For long segment lengths on Class I or II urban streets (1600 m or longer). FFS may be used to compute running time per kilometer. These times are shown in the entries for a 1600-m segment.

d. Likewise, Class III or IV urban streets with segment lengths greater than 400 m should lirst be reevaluated (i.e., the classification should be confirmed). If necessary, the values above 400 m can be extrapolated.

Although this table does not show it, segment running time depends on traffic flow rates; however, the dependence of intersection delay on traffic flow rate is greater and dominates in the computation of travel speed.

BFT 40503

CONFIDENTIAL

1.

FINAL EXAMINATION

SEMESTER/SESSION : COURSE NAME

II / 2019/2020 ADVANCED TRAFFIC ENGINEERING

PROGRAMME

: BFF COURSE CODE : BFT 40503

The following equations may be useful to you: $\omega_{12} = \frac{q_2 - q_1}{k_2 - k_1} = \frac{q_1 - q_2}{k_1 - k_2} = \frac{q_1 - 0}{k_1 - 0} = u_1 \qquad \qquad \omega_{13} = \frac{q_1 - q_3}{k_1 - k_2} = \frac{q_1 - 0}{k_1 - k_2} = \frac{q_1}{k_1 - k$ $\omega_{23} = \frac{q_2 - q_3}{k_2 - k_2} = \frac{0 - 0}{0 - k_i} = \frac{0}{k_i} = 0$ $\omega_{24} = \frac{q_2 - q_4}{k_2 - k_4} = \frac{0 - q_4}{0 - k_4} = u_4$ $\omega_{34} = \tan \gamma = \frac{\overline{ST}}{\overline{DC}}$ $\omega_{34} = \frac{q_3 - q_4}{k_2 - k_4} = \frac{0 - q_4}{k_1 - k_4} = \frac{-q_4}{k_1 - k_4}$ Length of queue at the end of the red signal = $r \times \omega_{13} = \frac{rq_1}{k_1 - k_2}$ $\overline{ST} = \frac{r\omega_{13}\omega_{34}}{\omega_{24}-\omega_{12}} \qquad \overline{RS} = (t_3 - t_2) = \frac{r\omega_{13}}{\omega_{12}-\omega_{24}}$ $v = v_f - \frac{v_f}{k_i}k$ $v = v_f e^{\left(\frac{-k}{k_j}\right)}$ $v = C \ln\left(\frac{k_j}{k}\right)$ Y = a - bX $a = \frac{\sum Y}{n} - b\frac{\sum X}{n}$ $b = \frac{n(\sum XY) - (\sum X)(\sum Y)}{n(\sum X^2) - (\sum X)^2} \qquad r = \frac{n(\sum XY) - (\sum X)(\sum Y)}{\sqrt{n(\sum Y^2) - (\sum X)^2 (n(\sum Y^2) - (\sum Y)^2)}}$ $d_1 = \frac{0.5C\left(1 - \frac{g}{C}\right)^2}{1 - \left(\frac{g}{C}\right)\min(X, 1.0)}$ $S_A = \frac{3600L}{T_R + d}$ $d = d_1 * PF + d_2 + d_3$ $d_{2} = 900T \left[(X-1) + \sqrt{(X-1)^{2} + \frac{8kIX}{cT}} \right] \qquad I = 1.0 - 0.91X_{u}^{2.68} \qquad d_{3} = \frac{1800Q_{b}(1+u)t}{cT}$ t = 0 if $Q_b = 0$, else $t = min\left(T, \frac{Q_b}{c\left[1 - min(1, X)\right]}\right)$ $u = 0 \text{ if } t < T, \text{ else } u = 1 - \frac{cT}{Q_b [1 - min(1, X)]}$ $v_w = \frac{q_2 - q_1}{k_2 + k_2 + k$

FINAL EXAMINATION

SEMESTER/SESSION : II/ 2019/2020 COURSE NAME : ADVANCED TRAFFIC

ENGINEERING

PROGRAMME : BFF COURSE CODE : BFT 40503

The following equations may be useful to you:

$$c = s \times N \times \left(\frac{g}{C}\right) \qquad \tau_{\min} = \delta + \frac{W + L}{v_o} + \frac{v_o}{2a} \qquad C_o = \frac{1.5L + 5}{1 - Y}$$

$$L = \sum l + R \qquad \qquad G_e = \frac{y}{Y}(C - L) \qquad \qquad G_a = G_e + l - \tau$$

If $W_E > 3$, $G_p = 3.2 + \frac{L}{S_p} + \left(2.7\frac{N_{ped}}{W_E}\right)$ If $W_E \le 3$. $G_p = 3.2 + \frac{L}{S_p} + \left(0.27N_{ped}\right)$

 $X_{c} = \sum \left(\frac{\nu}{s}\right)_{c} * \frac{C}{C-L} \qquad t_{c} = t_{1} + \frac{(t_{2}-t_{1})(p-q)}{(r-s)+(p-q)} \qquad \lambda = \frac{V}{T} \qquad \mu = \lambda t$

$$P(h \ge t) = e^{-\lambda t} \qquad P(h < t) = 1 - e^{-\lambda t}$$

Freq.
$$(h \ge t) = (V-1)e^{-\lambda t}$$
 Freq. $(h < t) = (V-1)(1-e^{-\lambda t})$

