

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION SEMESTER I **SESSION 2015/2016**

COURSE NAME : POLYPHASE CIRCUIT ANALYSIS

COURSE CODE

: BEF 23803

PROGRAMME

: BACHELOR OF ELECTRICAL

ENGINEERING WITH HONOURS

EXAMINATION DATE : DECEMBER 2015 / JANUARY 2016

DURATION

: 3 HOURS

INSTRUCTION

: ANSWER ALL QUESTIONS

THIS QUESTION PAPER CONSISTS OF SIX (6) PAGES

CONFIDENTIAL

BEF23803

Q1	(a)	Explain what is meant by an unbalanced three-phase system. Illustrate your a with a proper circuit diagram.	se system. Illustrate your answer	
		u propos discours discours	(3 marks)	
	(b)	A 210-V balanced three-phase voltage source feeds an unbalanced four-connected load. The branch impedances of the load are: $Z_1 = 10 + j10\Omega$, $Z_2 = Z_3 = 2 + j2\Omega$. Assume RYB phase sequence.		
		(i) Draw the circuit diagram of load connections	(3 marks)	
		(ii) Determine the voltage across each phase of the load, V_{RN} , V_{YN} , and V_{BN} .	(3 marks)	
		(iii) Find the current through each phase of the load, I_R , I_Y , I_B and the neutral (current, I_N . (8 marks)	
		(iv) Based on the results obtained from Q1(b)(iii), draw the complete phasor	diagram. (3 marks)	
Q2		A 10Ω resistor, 20mH inductor and 100μ F capacitor are connected in series ac supply as shown in Figure Q2 . Given: $V_S(t) = 220 \cos 1000t$	across an	
		(i) Find the load current.	(3 marks)	
		(ii) Determine the voltage drop across each element, V_R , V_L and V_C .	6 marks)	
		(iii) Calculate the complex power supplied by the source, S_V and the complex absorbed of each element, S_R , S_L and S_C .	`	
			(8 marks)	
		(iv) Calculate the total power absorbed by all three passive elements.	(3 marks)	
Q3		Figure Q3 shows an unbalanced three-wire star load connected to a balanced three-phase, 415V, 50Hz supply. Assume the phase sequence is RYB and take the reference phasor. Using Millman's theorem, calculate	V _{RN} as	
		(i) The potential difference between the two star points.	9 marks)	

CONFIDENTIAL

BEF23803

	(ii) Load phase voltages V_{RN} , V_{YN} , and V_{BN} .	(3 marks)
	(iii) Line currents I_R , I_Y and I_B	(3 marks)
	(iv) The complex power absorbed by each phase load.	(3 marks)
	(v) Total complex power supplied to the load.	(2 marks)
Q4	Figure Q4 shows the single line diagram of an industrial centre. The centre by a balanced three-phase source with a line voltage of 415 V, 50 Hz and balanced three-phase loads as follows:	is supplied ad has two
	Load 1: 160 kW at 0.7 pf lagging Load 2: 120 kVA at 0.85 pf lagging	
	Calculate (i) The total active consumed by the two loads	(4 marks)
	(ii) The total reactive power supplied by the source	(3 marks)
	(iii) The system apparent power	(1 mark)
	(iv) The system power factor	(1 mark)
	(v) The feeder current	(1 mark)
	(vi) The size of the shunt capacitor required to raise the system power faculagging.	tor to 0.9
		(8 marks)
	(vii)The feeder current after the power factor correction.	(2 marks)

CONFIDENTIAL

Q5	(a)	BEF23803 A Y-connected 120 MVA, 13.6 kV generator has a phase winding reactance of j If the generator above is short-circuited at its terminals, find the short circuit cu and the short circuit power delivered by the generator	25% ırren
		(i) in p.u. (6 m	arks
		(ii) in %,	
		(iii) in the actual units.	arks)
	(b)	Figure Q5(b) shows a 400V, 50Hz, single-phase generator supplying power to impedance Z_L through a single-phase 30 kVA, 415/110 V, 50 Hz transformer. transformer has a leakage reactance of j0.81 Ω and the load has an impedance $(0.9 + j0.2) \Omega$.	o an
		(i) Draw the per-unit circuit, labeling all values. (7 mag)	arks)
		(ii) Using per unit analysis with an S_{base} of 30 kVA, and voltage base of 4 determine	15V
		(a) The per-unit load current	
		(1 m	ark)
		(b) The actual load current	
		(1 m) (c) The current supplied by the generator	ark)
		(1 m	ark)

FINAL EXAMINATION

SEMESTER/SESSION

: I / 2015/2016

COURSE

: POLYPHASE CIRCUIT ANALYSIS

PROGRAMME

:2 BEV

COURSE CODE

: BEF23803

FIGURE Q2

FIGURE Q3

FINAL EXAMINATION

SEMESTER/SESSION

: I / 2015/2016

COURSE

: POLYPHASE CIRCUIT ANALYSIS

PROGRAMME

: 2 BEV

COURSE CODE

: BEF23803

415/100 V $Z_{eq2} = j0.81 \Omega$

FIGURE Q5(b)