

## UNIVERSITI TUN HUSSEIN ONN MALAYSIA

# **FINAL EXAMINATION** SEMESTER I **SESSION 2015/2016**

COURSE NAME

: PHYSICAL CHEMISTRY

COURSE CODE

: DAS 12303

PROGRAMME

: 1 DAU

EXAMINATION DATE : DECEMBER 2015/JANUARY 2016

**DURATION** 

: 2 HOURS 30 MINUTES

INSTRUCTION

: SECTION A

**ANSWER ALL QUESTIONS** 

**SECTION B** 

ANSWER TWO (2) QUESTIONS

ONLY

THIS QUESTION PAPER CONSISTS OF SIX (6) PAGES

CONFIDENTIAL

#### **SECTION A**

Q1 (a) The decomposition of  $N_2O_5$  is as follows:

$$2 \text{ N}_2\text{O}_5(g) \rightarrow 4 \text{ NO}_2(g) + \text{O}_2(g)$$

(i) Write the rate expression for the above reaction

(3 marks)

- (ii) If the concentration of  $N_2O_5$  is decreasing at a rate of  $4.2 \times 10^{-7}$  Ms<sup>-1</sup>, determine the rate at which the concentration of  $NO_2$  and  $O_2$  is increasing. (3 marks)
- (b) The following data were collected for the reaction of nitric oxide with hydrogen.

$$2 \text{ NO(g)} + 2 \text{ H}_2(g) \rightarrow \text{N}_2(g) + 2 \text{ H}_2\text{O(g)}$$

| Experiment | Initial          | Initial          | Initial rate (Ms <sup>-1</sup> ) |
|------------|------------------|------------------|----------------------------------|
|            | concentration of | concentration of |                                  |
|            | NO (M)           | $H_2(M)$         |                                  |
| 1          | 0.10             | 0.10             | 1.23 × 10 <sup>-3</sup>          |
| 2          | 0.10             | 0.20             | $2.46 \times 10^{-3}$            |
| 3          | 0.20             | 0.10             | $4.92 \times 10^{-3}$            |

- (i) Determine the order for the reactants NO, H<sub>2</sub> and the overall order. (10 marks)
- (ii) Calculate the rate constant, k.

(4 marks)

- (iii) Calculate the rate when [NO] = 0.050 M and [H<sub>2</sub>] =0.150 M. (2 marks)
- (c) Find the half-life for a first order reaction given the rate constant,  $k ext{ is } 2.2 \times 10^{-5} ext{ s}^{-1}$ .

(3 marks)

#### CONFIDENTIAL

DAS 12303

Q2 (a) Determine the maximum number of electrons that can have the following quantum numbers

(i) 
$$n = 5$$

(ii) 
$$n = 4, \ell = 2$$

(iii) 
$$n = 2, \ell = 1$$

(iv) 
$$n = 0, \ell = 0, m_{\ell} = 0$$

(v) 
$$n=1, \ell=0, m_{\ell}=0$$

(1 mark)

(b) (i) Write the electron configuration for the atoms Si and Ca. (Atomic number, Z: Si = 14, Ca = 20)

(3 marks)

(ii) Select the atom that has diamagnetic properties.

(4 marks)

- (c) Using NH<sub>3</sub> and MgO as examples,
  - (i) Discuss ionic and covalent bonds.

(4 marks)

(ii) Use Lewis dot symbols to show the formation of NH<sub>3</sub> and MgO. (Atomic number, Z: H = 1, N = 7, O = 8, Mg = 12)

(4 marks)

(d) Write the Lewis structure of HOCl and calculate formal charges. (Atomic number, Z: H = 1, O = 8, Cl = 17)

(5 marks)

#### **SECTION B**

Q3 (a) The gas pressure in an aerosol can is 1.5 atm at 25 °C. Find the pressure if the can is heated to 450 °C.

(5 marks)

(b) An inflated balloon has a volume of 6.0 L at sea level where the temperature is 22  $^{\circ}$ C and the pressure is 1.0 atm. Calculate the volume of the balloon when the temperature is -21  $^{\circ}$ C and the pressure is 0.45 atm.

(5 marks)

(c) Tennis balls are usually filled with air or  $N_2$  gas to a pressure above atmospheric pressure to increase their "bounce." If a tennis ball has a volume of 144 mL and contains 0.33 g of  $N_2$  gas, calculate the pressure inside the ball at 24 °C. (Relative atomic mass: N = 14, R = 0.0821 L.atm/mol.K)

(8 marks)

(d) Calculate the density of carbon tetrachloride vapour, CCl<sub>4</sub> at 714 torr and 125 °C. (Relative atomic mass: C = 12, Cl = 35.5, R = 0.0821 L.atm/mol.K)

(7 marks)

**Q4** (a) (i) Define entropy, S.

(2 marks)

(ii) Arrange PCl<sub>5</sub>(s), PCl<sub>5</sub>(g) and PCl<sub>3</sub>(g) in order of increasing S.

(1 mark)

(b) Consider the following reaction carried out at 25°C and 1 atm.

$$2SO_2(g) + O_2(g) \rightarrow 2SO_3(g)$$

Calculate  $\Delta H^{\circ}$ ,  $\Delta S^{\circ}$ , and  $\Delta G^{\circ}$  using the following data:

| Substance | $\Delta H_f^o$ (kJ/mol) | So (J K-1mol-1) |
|-----------|-------------------------|-----------------|
| $SO_2(g)$ | - 297                   | 248             |
| $O_2(g)$  | 0                       | 205             |
| $SO_3(g)$ | - 396                   | 257             |

(8 marks)

### **CONFIDENTIAL**

#### DAS 12303

(c) 30.0 g of urea,  $(NH_2)_2CO$  is dissolved in 200 g of  $H_2O$  at 25°C.

(i) Find the number of moles of  $(NH_2)_2CO$  and  $H_2O$ . (Relative atomic mass : H = 1, C = 12, N = 14, O = 16)

(4 marks)

(ii) Determine the mole fractions of H<sub>3</sub>PO<sub>4</sub> and H<sub>2</sub>O.

(4 marks)

(iii) Calculate the vapour pressure of the aqueous solution. The vapour pressure of pure  $H_2O$  at 25°C is 23.8 torr.

(3 marks)

(iv) Calculate the molarity of the solution. (Assume density of solution is 1 g/mL)

(3 marks)

**Q5** (a) At 1000 K,  $K_p = 1.85$  for the reaction

$$SO_2(g) + \frac{1}{2} O_2(g)$$
  $SO_3(g)$ 

- (i) Find  $K_p$  for the reaction :  $SO_3(g)$   $SO_2(g) + \frac{1}{2}O_2(g)$  (1 mark)
- (ii) Find  $K_p$  for the reaction:  $2 SO_3(g) = 2 SO_2(g) + O_2(g)$  (1 mark)
- (iii) Determine  $K_c$  for the reaction in (ii). (R = 0.0821 L.atm/mol.K)

(4 marks)

(b) A mixture of 0.10 mol of NO, 0.050 mol of  $H_2$ , and 0.10 mol of  $H_2O$  is placed in a 1.0-L vessel at 300 K. The following equilibrium is established:

$$2 \text{ NO}(g) + 2 \text{ H}_2(g)$$
  $\longrightarrow$   $N_2(g) + 2 \text{ H}_2O(g)$ 

At equilibrium [NO] = 0.062 M.

- (i) Calculate the equilibrium concentrations of  $H_2$ ,  $N_2$  and  $H_2O$ .
- (ii) Calculate  $K_c$ .

(4 marks)

(3 marks)

(c) For a voltaic cell based on the reaction:

$$2 \text{ Al}(s) + 3 \text{ I}_2(s) \rightarrow 2 \text{ Al}^{3+}(aq) + 6 \Gamma(aq)$$

(i) Identify the anode and cathode and write the half-cell reaction at the anode and cathode.

(2 marks)

(ii) Write the cell diagram for the voltaic cell.

(2 marks)

(iii) Calculate  $E_{\text{cell}}^{\circ}$  and  $E_{\text{cell}}$  given [Al<sup>3+</sup>] = 1.0 M and [ $\Gamma$ ] = 0.068 M.  $(E_{\text{Al}^{3+}/\text{Al}}^{\circ} = -1.66 \text{ V}, \ E_{\text{L/l}}^{\circ} = 0.54 \text{ V})$ 

(8 marks)

- **Q6** (a) Identify the Brønsted-Lowry acid and base and their conjugate acid-base pairs for the reaction :
  - (i)  $H_2O(\ell) + H_2CO_3(aq)$   $\longrightarrow$   $H_3O^+(aq) + HCO_3^-(aq)$  (2 marks)
  - (ii)  $C_5H_5NH^+(aq) + H_2O(\ell)$   $C_5H_5N(aq) + H_3O^+(aq)$  (2 marks)
  - (b) A solution has  $[OH^{-}] = 3.9 \times 10^{-6} \text{ M}$ 
    - (i) Calculate [H $^+$ ], pH and pOH  $(K_w = 1.0 \times 10^{-14})$

(8 marks)

- (ii) Classify the solution as acidic, basic or neutral giving suitable reasons. (2 marks)
- (c) Calculate the pH of  $5.0 \times 10^{-2}$  M Ca(OH)<sub>2</sub> solution.  $(K_w = 1.0 \times 10^{-14})$

(4 marks)

- (d) The pH of a  $1.00 \times 10^{-2}$  M solution of cyanic acid (HOCN) is 2.77 at  $25^{\circ}$ C.
  - (i) Write an equation for the dissociation of cyanic acid.

(1 mark)

(ii) Find the concentration of H<sup>+</sup> ions.

(2 marks)

(iii) Calculate  $K_a$  for HOCN.

(4 marks)