

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION SEMESTER I SESSION 2015/2016

COURSE NAME

: HYDRAULICS

COURSE CODE

: DAC 21003

PROGRAMME

: 2 DAA

EXAMINATION DATE

: DECEMBER 2015 /

JANUARY 2016

DURATION

: 3 HOURS

INSTRUCTION

: ANSWER **FIVE (5)** QUESTIONS

ONLY

THIS QUESTION PAPER CONSISTS OF SIX (6) PAGES

CONFIDENTIAL

ŲI	(a)	Define two (2) differences between hydrostatic pressure and atmospheric pressure	(4 marks)
	(b)	T Parameters	(4 marks)
	(2)		
	(c)	i deput sete vi viatel surface inside a reserv	voir. (3 marks)
	(d)	Refer Figure Q1(d) , determine absolute pressure of four different fluid inside container. ($P_{atm} = 102 \text{ kPa}$)	e a glass
			(9 marks)
Q2	(a)	Describe about centre of pressure.	
			4 marks)
	(b)	Sketch the hydrostatic force on horizontal submerged plane surface.	4 marks)
	(c)	Refer Figure Q2(c) , 10 m width rectangular gate that leans against the floor with 45°. Analyze the minimum force required to open the water gate.	an angle
			2 marks)
Q3	(a)	Sketch the types of water flow as below:	
		(i) Steady flow	
		•	2 marks)
		(ii) Uniform flow	
			(1 mark)
		(iii) Non uniform flow	4 1)
			(1 mark)
	(b)	Identify two (2) differences between gradually varied flow and rapidly varied flow.	1 marks)
	(c)	Determine the velocity from 9 mm nozzle attached to the 36 mm diameter pip velocity of 1.5 m/s.	e has a
			marks)

	(d)	A 450 mm diameter pipe has velocity of Tetrachloride Carbon (density = 1500 kg/m ³) which is 2.4 m/s. Calculate the discharge in different unit as below:
		(i) kg/hour
		(2 marks)
		(ii) ml/min (2 marks)
		(iii) m^3/s
		(2 marks)
		(iv) Gallon/day
		(2 marks)
Q4	(a)	Describe about flow, kinetic, potential and total energy in fluid flow.
ζ.	()	(4 marks)
	(b)	Identify four (4) principles of Bernoulli's equation.
	(0)	(4 marks)
	(c)	Refer Figure Q4(c), the specific weight of air is 12.7 N/m^3 and Benzene in the manometer has specific gravity = 0.88. Determine the flow rate in the venturi meter by neglecting losses. (Diameter pipe $1 = 200 \text{ mm}$ and diameter pipe $2 = 100 \text{ mm}$)
		(12 marks)
Q5	(a)	Define two (2) differences between laminar and turbulent flow.
		(4 marks)
	(b)	Explain about friction in pipe.
		(4 marks)
	(c)	Analyze the head loss of a raw oil (specific gravity = 856 kg/m^3 , viscosity = $7.2 \times 10^{-3} \text{ Ns/m}^2$) due to friction which flowing through a 135 m long pipe. The velocity is 3 m/s and pipe radius is 225 mm.
		(6 marks)
	(d)	Measure total discharge of parallel pipe system which length of pipe A is 20 m with discharge in pipe 2 is 2 m ³ /s and length of pipe B is 5 m. Both pipe has a same diameter with friction factor is 0.01. Minor losses are neglected.
		(6 marks)

CONFIDENTIAL

DAC 21003

Q6	(a)	Compare the characteristics between supressed crested weir and contracted crested weir.
		(4 marks)

(b) Sketch two (2) artificial channels.

(2 marks)

(c) Explain about pump as a hydraulic machine.

(2 marks)

(d) Analyze the head in centimeters for the discharge over a triangular notch weir is to be 127.5 l/s. If V- notch is having angle of 40°. Take coefficient of discharge as 0.65.

(4 marks)

(e) Refer Figure Q6(e), determine the hydraulic radius.

(4 marks)

- (f) A centrifugal pump is needed to supply 69 m³/s of water for a city. This operation will utilise a net head (H) of 60 m with a specific speed N of 1,350 rpm. Given that the inflow power is 15 MW, calculate as below:
 - (i) Outflow power, P_d

(2 marks)

(ii) Overall efficiency, η_0

(2 marks)

- END OF QUESTIONS-

FINAL EXAMINATION

SEMESTER/SESSION: SEM I 2015/2016 COURSE NAME: HYDRAULICS

PROGRAMME: 2 DAA COURSE CODE: DAC 21003

FIGURE Q1(d)

FIGURE Q2(c)

FINAL EXAMINATION

SEMESTER/SESSION: SEM I 2015/2016 COURSE NAME: HYDRAULICS

PROGRAMME: 2 DAA COURSE CODE: DAC 21003

FIGURE Q4(c)

FIGURE Q6(e)