

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION **SEMESTER II SESSION 2017/2018**

COURSE NAME

: SOIL MECHANICS

COURSE CODE

: BPD 14402 / BPD 20502

PROGRAMME CODE : BPC

EXAMINATION DATE : JUNE / JULY 2018

DURATION

: 2 HOURS

INSTRUCTION

: ANSWER ALL QUESTIONS

THIS QUESTION PAPER CONSISTS OF SIX (6) PAGES

CONFIDENTIAL

CONFIDENTIAL

BPD 14402 / BPD 20502

Shear strength of a material is the load per unit area or pressure that it can withstand before 01 undergoing shearing failure.

Explain with examples, FIVE (5) conditions why shear strength is required to be assessed. (25 marks)

- Soils are stable if the stress level is maintained or water content remains constant. **Q2** However, when stresses applied in soil mass are changed, it deforms and causes settlement in some instances.
 - (a) Define Settlement and Consolidation.

(5 marks)

Differentiate between Casagrande method and Taylor method using information as (b) provided in Appendix I. Please use the provided form in Figure Q2(b).

(20 marks)

- Soil sieving can be performed in either wet or dry condition. **Q3**
 - Describe the smallest and largest mesh openings for determining grain size (a) distribution.

(4 marks)

Illustrate the methodology to carry out a sieve analysis on a sample of clay. (b)

(7 marks)

Discuss the conditions of the soil whether to use wet sieving or dry sieving. (c)

(14 marks)

Disturbed and undisturbed samples are collected through many sampling methods 04 including test pits, thin walled sampler, Mazier sampler, soil penetration test, and cone penetration test.

Differentiate the process of the above mentioned methods.

และเป็นของสมเกาใหล่ค

(25 marks)

- END OF QUESTIONS—

APPENDIX I

FINAL EXAMINATION

SEMESTER/SESSION: SEM II/2017/2018 COURSE NAME: SOIL MECHANICS

PROGRAMME CODE: BPC

COURSE CODE: BPD 14402/ BPD 20502

Sample information:

Sample no: 1A

Location: Batu Pahat, Johor, Malaysia Coordinate: 1.8500° N, 102.9300° E

Depth: 5 meter Type of soil: Clay Unit weight: 18 kN/m³

Table 02(b) Oedometer test result

Table Q2(b) Oedometer test result										
Effective stress (kN/m ²)	25	50	100	200	400	800	200	50		
Void ratio (e)	0.85	0.82	0.71	0.57	0.43	0.3	0.4	0.5		

APPENDIX I

FINAL EXAMINATION	MATRIX NO.: PROGRAMME CODE: BPC COURSE CODE: BPD 14402 / BPD 20502							Figure Q2(b)	
	NAME: SEMESTER / SESSION: SEM II / 2017/2018 COURSE NAME: SOIL MECHANICS				+		D. J.		

FINAL EXAMINATION

NAME: SEMESTER / SESSION: SEM II / 2017/2018 COURSE NAME: SOIL MECHANICS

MATRIX NO.: PROGRAMME CODE: BPC COURSE CODE: BPD 14402 / BPD 20502

Figure Q2(b)

CONFIDENTIAL

CONFIDENTIAL

APPENDIX I

FINAL EXAMINATION

SEMESTER/SESSION: SEM II/2017/2018 COURSE NAME: SOIL MECHANICS

2017/2018 PROGRAMME CODE: BPC

COURSE CODE: BPD 14402 / BPD 20502

Equation for my:

$$m_v = \Delta e \frac{1}{\Delta \sigma}, \frac{1}{1 + e_{avg}}$$

Where,
$$e_{avg} = \underline{e_1 + e_2}$$

Gradient of the curve =
$$\frac{\Delta e}{\Delta \sigma}$$
,

Therefore,
$$m_v =$$
 Gradient of the curve $X \left[\begin{array}{c} 1 \\ \hline 1 + \left[\begin{array}{c} e_1 + e_2 \\ \hline 2 \end{array} \right] \end{array} \right]$

Equation for Cc:

$$C_c = \frac{e_1 - e_2}{\sigma'_1 - \sigma'_2}$$

٠٠٠٠)

Equation for σ'₀:

$$\sigma'_{o} = (\underline{\gamma \text{sat} - \gamma \text{w}}) \text{ H}$$