

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION SEMESTER II **SESSION 2014/2015**

COURSE NAME

: OPTIMIZATION TECHNIQUES I

COURSE CODE : BWA40603

PROGRAMME : 3 BWA

EXAMINATION DATE : JUNE 2015 / JULY 2015

DURATION

: 3 HOURS

INSTRUCTION : ANSWER ALL QUESTIONS

THIS QUESTION PAPER CONSISTS OF FIVE (5) PAGES

CONFIDENTIAL

Q1 Consider the quadratic problem

minimize
$$f(x) = \frac{1}{2}x^{T}Qx - b^{T}x$$

where $x \in \Re^n$ and Q is an $n \times n$ symmetric positive definite matrix. The best direction of search is in the Q-conjugate direction. Basically, two directions $d^{(1)}$ and $d^{(2)}$ in \Re^n are said to be Q-conjugate if $d^{(1)T}Qd^{(2)}=0$. In general, we have the following definition:

Definition: Let Q be a real symmetric $n \times n$ matrix. The directions $d^{(0)}, d^{(1)}, d^{(2)}, \dots, d^{(m)}$ are Q-conjugate if for all $i \neq j$, we have $d^{(i)T}Qd^{(j)} = 0$.

(a) Prove the following proposition.

Proposition: Let Q be a real symmetric $n \times n$ matrix. If the directions $d^{(0)}, d^{(1)}, ..., d^{(k)} \in \mathbb{R}^n$, $k \le n-1$, are nonzero and Q-conjugate, then they are linearly independent.

(12 marks)

(b) Let

$$Q = \begin{pmatrix} 3 & 0 & 1 \\ 0 & 4 & 2 \\ 1 & 2 & 3 \end{pmatrix}.$$

Note that $Q = Q^{T} > 0$. The matrix Q is positive definite because all its leading principal minors are positive:

$$\Delta_1 = 3 > 0$$
, $\Delta_2 = \det \begin{pmatrix} 3 & 0 \\ 0 & 4 \end{pmatrix} = 12 > 0$, $\Delta_3 = \det Q = 20 > 0$.

Construct a set of Q-conjugate vectors $d^{(0)}$, $d^{(1)}$, $d^{(2)}$, where

$$d^{(0)} = (1,0,0)^{\mathrm{T}}, \quad d^{(1)} = (d_1^{(1)}, d_2^{(1)}, d_3^{(1)}), \quad d^{(2)} = (d_1^{(2)}, d_2^{(2)}, d_3^{(2)}).$$
(13 marks)

Q2 The conjugate direction algorithm for minimizing the quadratic function

$$f(x) = \frac{1}{2}x^{\mathrm{T}}Qx - b^{\mathrm{T}}x$$

where $Q = Q^{T} > 0$, $x \in \Re^{n}$, is given by

Basic conjugate direction algorithm: Given a starting point $x^{(0)}$ and Q-conjugate directions $d^{(0)}$, $d^{(1)}$, $d^{(2)}$, ..., $d^{(n-1)}$, for $k \ge 0$,

$$g^{(k)} = \nabla f(x^{(k)}) = Qx^{(k)} - b, \qquad \alpha_k = -\frac{g^{(k)\mathsf{T}}d^{(k)}}{d^{(k)\mathsf{T}}Qd^{(k)}}, \qquad x^{(k+1)} = x^{(k)} + \alpha_k d^{(k)}.$$

The following theorem shows the conjugate direction method.

Theorem: For any starting point $x^{(0)}$, the basic conjugate direction algorithm converges to the unique x^* that solves Qx = b in n steps, that is, $x^{(n)} = x^*$.

(a) Consider $x^* - x^{(0)} \in \mathbb{R}^n$. Because the directions $d^{(i)}$, for i = 0, 1, ..., n-1, are linearly independent, there exist constants β_i , for i = 0, 1, ..., n-1, such that

$$x^* - x^{(0)} = \beta_0 d^{(0)} + \dots + \beta_{n-1} d^{(n-1)}$$
.

Show that

$$\beta_k = -\frac{g^{(k)T}d^{(k)}}{d^{(k)T}Qd^{(k)}} = \alpha_k$$

and

$$x^* = x^{(n)}.$$

(15 marks)

(b) Find the minimum of

$$f(x_1, x_2) = \frac{1}{2} x^{\mathrm{T}} \begin{pmatrix} 4 & 2 \\ 2 & 2 \end{pmatrix} x - x^{\mathrm{T}} \begin{pmatrix} -1 \\ 1 \end{pmatrix}, x \in \Re^2,$$

using the conjugate direction method with the initial point $x^{(0)} = (0,0)^T$, and Q-conjugate directions $d^{(0)} = (1,0)^T$ and $d^{(1)} = (-\frac{3}{8},\frac{3}{4})^T$.

(10 marks)

Q3 (a) The minimizer for the quadratic approximation is used as the starting point for the next iteration. This leads to Newton's recursive algorithm

$$x^{(k+1)} = x^{(k)} - F(x^{(k)})^{-1} g^{(k)}.$$

We may try to guarantee that the algorithm has the descent property by modifying the original algorithm as follows:

$$x^{(k+1)} = x^{(k)} - \alpha_k F(x^{(k)})^{-1} g^{(k)}$$

where α_{k} is chosen to ensure that

$$f(x^{(k+1)}) < f(x^{(k)}).$$

To avoid the computation of $F(x^{(k)})^{-1}$, the quasi-Newton methods use an approximation to $F(x^{(k)})^{-1}$ in place of the true inverse. Consider the formula

$$x^{(k+1)} = x^{(k)} - \alpha H_{k} g^{(k)},$$

where H_k is an $n \times n$ real symmetric positive definite matrix and α is a positive search parameter. Show that to guarantee a decrease in f for small α , we have

$$g^{(k)T}H_kg^{(k)} > 0.$$

(10 marks)

(b) Quasi-Newton algorithms have the form

$$\begin{split} d^{(k)} &= -H_k g^{(k)}, \\ \alpha_k &= \operatorname*{arg\,min}_{\alpha \geq 0} f(x^{(k)} + \alpha d^{(k)}), \\ x^{(k+1)} &= x^{(k)} + \alpha_k d^{(k)}, \end{split}$$

where the matrices H_0, H_1, \dots are symmetric. In the quadratic case, these matrices are required to satisfy

$$H_{k+1}\Delta g^{(i)} = \Delta x^{(i)}, \quad 0 \le i \le k,$$

where

$$\Delta x^{(i)} = x^{(i+1)} - x^{(i)} = \alpha_i d^{(i)}$$
 and $\Delta g^{(i)} = g^{(i+1)} - g^{(i)} = Q \Delta x^{(i)}$.

It turns out that quasi-Newton methods are also conjugate direction methods, as stated in the following theorem.

Theorem: Consider a quasi-Newton algorithm applied to a quadratic function with Hessian $Q = Q^T$ such that for $0 \le k < n-1$,

$$H_{k+1}\Delta g^{(i)}=\Delta x^{(i)},\quad 0\leq i\leq k,$$

where $H_{k+1} = H_{k+1}^{\mathsf{T}}$. If $\alpha_i \neq 0, 0 \leq i \leq k$, then $d^{(0)}, ..., d^{(k+1)}$ are Q-conjugate.

Prove the theorem above.

(15 marks)

Q4 In the rank one correction formula, the correction term is symmetric and has the form $a_k z^{(k)} z^{(k)T}$, where $a_k \in \Re$ and $z^{(k)} \in \Re^n$. Therefore, the update equation is

$$H_{k+1} = H_k + a_k z^{(k)} z^{(k)T}.$$

Note that

$$\operatorname{rank} z^{(k)} z^{(k)\mathrm{T}} = \operatorname{rank} \left(\begin{bmatrix} z_1^{(k)} \\ \vdots \\ z_n^{(k)} \end{bmatrix} \begin{bmatrix} z_1^{(k)} \cdots z_n^{(k)} \end{bmatrix} \right) = 1$$

and hence the name rank one correction.

(a) Consider the condition $H_{k+1}\Delta g^{(k)} = \Delta x^{(k)}$, show that

$$H_{k+1} = H_k + \frac{(\Delta x^{(k)} - H_k \Delta g^{(k)})(\Delta x^{(k)} - H_k \Delta g^{(k)})^{\mathrm{T}}}{\Delta g^{(k)\mathrm{T}}(\Delta x^{(k)} - H_k \Delta g^{(k)})},$$

with given H_k , $\Delta g^{(k)}$, and $\Delta x^{(k)}$.

(10 marks)

(b) Let

$$f(x_1, x_2) = x_1^2 + \frac{1}{2}x_2^2 + 3.$$

Apply the rank one correction algorithm to minimize f. Use $x^{(0)} = (1,2)^T$ and $H_0 = I_2$.

(15 marks)

- END OF QUESTION -