

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION SEMESTER II SESSION 2014/2015

COURSE NAME

ELECTRONIC TESTING AND

MAINTENANCE

COURSE CODE

BWC 31203

PROGRAMME

3 BWC

EXAMINATION DATE :

JUNE 2015 / JULY 2015

DURATION

3 HOURS

INSTRUCTION

ANSWER ALL QUESTIONS

THIS QUESTION PAPER CONSISTS OF FOUR (4) PAGES

CONFIDENTIAL

Q1	(a)	Briefly differentiate between the ideal transformer and real transformer. (4 m.)	arks)
	(b)	What is leakage inductance? Why is measurement of leakage inductance import (5 m	ant? arks)
	(c)	Draw the schematic diagram of transformer with open circuit secondary term which consist of leakage inductance (LL). How is leakage inductance measured? (11 n	
Q2	(a)	Describe about the following precision instrument elements for test measurement. (i) Impedance (ii) Phase shift	and
		(iii) Series and parallel equivalencies (12 m	arks)
	(b)	A particular AC series circuit has a resistor of 4 Ω , a reactance across an induce 8 Ω and a reactance across a capacitor of 11 Ω . Show the complex impedance circuit in RLC graph and express it in both rectangular and polar form. (4 n	
	(c)	Referring to the Q2(b), suppose we have a current of 10 A in the circuit, fir magnitude of the voltage across	nd the
		(i) the resistor (V_R) (ii) the inductor (V_L) (iii) the capacitor (V_C) (iv) the combination (V_{RLC})	narks)

Q3 (a) Based on Figure Q3(a), is the circuit inductive or capacitive? Determine the current by the complex version of Ohm's Law and also the RMS current.

Figure Q3(a)

(10 marks)

- (b) Discuss the major sources of measurement errors and ways to minimize errors.
 (10 marks)
- Q4 (a) Derive the shielding effectiveness (S.E.) below of an infinite sheet of a good conductor using plane wave shielding theory

$$S.E. = 20 \log \frac{\eta_o}{4\eta_s} + 20 \log e^{t/\delta}$$
(14 marks)

(b) A transformer generating primarily a magnetic field is located 10 cm from a shielding structure. The shielding structure is made from a 1 cm thick sheet of copper. Estimate the shielding effectiveness of this structure at 1.5 kHz. (Hint: The wave impedance with the magnetic dipole source at the position of the shield is given by $\eta_o \approx \omega \mu r$). Given $\mu = 4\pi \times 10^{-7} \text{H.m}^{-1}$, $\sigma_{copper} = 5.7 \times 10^{7} \text{S/m}$.

(6 marks)

Q5 (a) What is an Operational Amplifier (op-amp)?

(2 marks)

(b) Suggest three test-circuit topologies that commonly used for bench and production testing of DC parameters in op-amp.

(3 marks)

(c) Suggest five DC test parameters and briefly describe each of them.

(15 marks)

END OF QUESTION -