

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION SEMESTER II **SESSION 2014/2015**

COURSE NAME

: ELECTROMAGNETISM

COURSE CODE : BWC 21103

PROGRAMME

: 2 BWC

EXAMINATION DATE : JUNE 2015 / JULY 2015

DURATION

: 3 HOURS

INSTRUCTION

: 1. ANSWER ALL QUESTIONS IN

SECTION A

2. ANSWER **ONE** (1) QUESTION

ONLY IN SECTION B

THIS QUESTION PAPER CONSISTS OF SIX (6) PAGES

SECTION A

Q1 (a) Find the force on 0.3 mC at (1, 2, 3) m due to a second charge of 0.1 mC at (2, 0, 5), in the free space.

(5 marks)

- (b) A point charge of 6 μ C is located at the origin, a uniform line charge density of 180 nC/m² lies along x axis and uniform sheet of charge equal to 25 nC/m² lies in the z=0 plane. Analyze;
 - (i) $\overline{\mathbf{D}}$ at A (0, 0, 5)
 - (ii) $\bar{\bf D}$ at B (1, 2, 5)
 - (iii) Total electric flux leaving the closed surface of a sphere of 5 m radius, centered at the origin.

(15 marks)

(c) Determine the electric field, $\overline{\bf E}$ at (0, 3, 4) m in Cartesian co-ordinates due to a point charge Q = 0.5 μ C at the origin.

(5 Marks)

Q2 (a) Consider differential surface area dS as shown in the **Figure Q2 (a)** below. The direction normal to the surface dS is \hat{a}_r , considering spherical coordinate system. The radius of the sphere is r = a. The direction of \overline{D} is along \hat{a}_r which is normal to dS at any point P.

Figure Q2 (a)

- (i) Calculate \vec{D} due to point charge Q.
- (ii) Convince the Gauss Law where Q coulomb of flux crosses the surface if Q coulombs of charges are enclosed by that surface.

 (10 marks)
- (b) A particular vector field $\vec{F} = r^2 \cos^2 \emptyset \ \widehat{a_r} + z \sin \emptyset \ \widehat{a_\emptyset}$ is in the cylindrical coordinates system. Analyse the flux, $\oint_{\mathcal{S}} \vec{F} \cdot d\vec{S}$, emanating due to this field from the closed surface of the cylinder $0 \le z \le 1$, r = 4.

(15 marks)

Q3 (a) Consider the two points P_1 and P_2 along with the $I_1 d\overline{L}_1$ current element at P_1 shown in **Figure Q3(a)**.

Figure Q3 (a)

Calculate the incremental field strength, $d\overline{H}_2$ at P_2 (0, 3, 0) due to the current element of $2\pi \overrightarrow{a_z}$ (μAm) at P_1 (4, 0, 0).

(10 marks)

(c) Given the Stoke's theorem:

$$\oint_{L} \vec{H} \cdot d\vec{L} = \int_{S} (\nabla \times \vec{H}) \cdot d\vec{S}$$

Evaluate the left hand side of the Stoke's theorem for the field $\vec{H} = 6xy\hat{a}_x - 3y^2\hat{a}_y(A/m)$ and the rectangular path around the region, $2 \le x \le 5$, $-1 \le y \le 1$, z = 0. Assume that the positive direction of $d\vec{S}$ be \hat{a}_z . (10 marks)

(d) Given the magnetic field, $\vec{H} = [3x\cos\beta + 6y\sin\alpha]\widehat{a_z}$. Determine the current density, \vec{J} if fields are invariant with time.

(5 marks)

SECTION B

Q4 (a) Sketch the graph showing the plane electromagnetic wave propagating in the +x direction.

(5 marks)

(b) Consider the 9375 MHz uniform plane wave is propagating in polystyrene where $\mu_r=1$ and $\varepsilon_r=2.56$. If the amplitude of the electric field intensity is 20 V/m and the material is assumed to be lossless, $\sigma=0$, determine the velocity of the propagation and the amplitude of the magnetic field intensity.

(10 marks)

(c) In free space $(z \le 0)$, a plane wave with:

$$\overrightarrow{H_i} = 10\cos(10^8 t - \beta z)\,\widehat{a_x}(mA/m)$$

is incident normally on a lossless medium ($\varepsilon = 2\varepsilon_0$, $\mu = 8\mu_0$) in region $z \ge 0$. Distinguish the reflected wave $\overrightarrow{H_r}$, $\overrightarrow{E_r}$ and the transmitted wave $\overrightarrow{H_t}$, $\overrightarrow{E_t}$.

(10 marks)

Q5 (a) Can light phenomena be better explained by a transverse wave model or by a longitudinal wave model? Explain your answer.

(2 marks)

(8 ms

(8 marks)

(c) Given:

$$\vec{E}_{\nu}(x,t) = E_0 \cos(kx - \omega t) \hat{x}$$
 with $\omega = kc$.

(i) Verify that the equation above satisfy the one dimensional wave equations

$$\frac{\partial^2 E_y(x,t)}{\partial x^2} = \frac{1}{c^2} \frac{\partial^2 E_y(x,t)}{\partial t^2}$$

(10 marks)

(ii) Create the corresponding magnetic field, \vec{B} .

(5 marks)

- END OF QUESTION -

FINAL EXAMINATION

SEMESTER / SESSION : SEM I I/ 2014/2015 PROGRAMME : 2 BWC

COURSE

: ELECTROMAGNETISM COURSE CODE : BWC21103

LIST OF EQUATIONS

LIST OF EQUATIONS	
Electric	Magnetic
$\mathbf{F} = \frac{Q_1 Q_2}{4\pi \varepsilon_0^2} \mathbf{a}_r$	$dB = \frac{\mu_0 I dI \times a_r}{4\pi R^2}$
$\int D. dS = Q_{enc}$	$\int H. dI = I_{enc}$
F = QE	$F = Q\mathbf{u} \times \mathbf{B}$
dQ	$Q\mathbf{u} = Id\mathbf{I}$
$E = \frac{V}{l} (V/m)$	$H = \frac{I}{l} \text{ (V/m)}$
$D = \frac{\Psi}{S} (C/m^2)$	$\mathbf{B} = \frac{\Psi}{S} \; (\text{Wb/m}^2)$
$D = \varepsilon E$	$\mathbf{B} = \mu \mathbf{H}$
$\mathbf{E} = -\nabla V$	$\mathbf{H} = \nabla V_m \ (\mathbf{H} = 0)$
$V = \int \frac{\rho_L dl}{4\pi \varepsilon r}$	$\mathbf{A} = \int \frac{\mu I d\mathbf{I}}{4\pi R}$
$\Psi = \int \mathbf{D}.d\mathbf{S}$	$\Psi = \int \mathbf{B}. d\mathbf{S}$
$\Psi = Q = CV$	$\Psi = LI$
$I = C \frac{dV}{dt}$	$V = L \frac{dI}{dt}$
$w_{\mathcal{E}} = -\frac{\rho_{v}}{\varepsilon} \mathbf{D}. \mathbf{E}$	$w_m = \frac{1}{2} \mathbf{B} \cdot \mathbf{H}$
$\nabla^2 \mathbf{V} = -\frac{\rho_v}{\varepsilon}$	$\nabla^2 \mathbf{A} = -\mu \mathbf{J}$