

## UNIVERSITI TUN HUSSEIN ONN MALAYSIA

# **FINAL EXAMINATION SEMESTER I SESSION 2013/2014**

COURSE NAME

: STRUCTURAL DESIGN

COURSE CODE

: BPD 30802

PROGRAMME

: 3BPC

EXAMINATION DATE : DECEMBER 2013/JANUARY 2014

**DURATION** 

: 2 HOURS

INSTRUCTION

A) ANSWER ALL QUESTIONS

B) ANSWER TWO (2) **QUESTIONS ONLY** 

THIS QUESTION PAPER CONSISTS OF SIX (6) PAGES

CONFIDENTIAL

#### **SECTION A**

Q1 (a) Discuss **THREE** (3) main assumptions used in the design and theory of reinforced concrete.

(9 marks)

(b) A rectangular reinforced concrete beam has to support a design moment of 195kNm. The beam rectangular section dimension is 250 x 500 mm ( $b \times d$ ) as shown in Figure Q1. Characteristic concrete strength of beam,  $f_{ck} = 25 \text{N/mm}^2$ ; and high yield steel reinforcement characteristic strength,  $f_{yk} = 500 \text{N/mm}^2$ .

Calculate the area of steel reinforcement required.

(16 marks)

Q2 (a) Explain the aim of designing an under-reinforced concrete structural component.

(4 marks)

(b) Illustrate with explanation the behaviour of a loaded continuous beam in bending.

(5 marks)

(c) A 4m span simply supported slab with effective depth d=150 mm is to carry an ultimate design load of 15kN/m per m width. The steel reinforcement at the tension side consists of H10-200 bar which are continued to support.

Analyse the outcome to verify shear of the simply supported slab, assuming  $f_{ck} = 25 \text{N/mm}^2$ , and reinforcement steel strength,  $f_{yk} = 500 \text{N/mm}^2$ .

(16 marks)

#### **SECTION B**

- A rectangular reinforced concrete slab is simply supported on two masonry walls 250mm thick and 5m apart (clear distance). The slab carries a distributed permanent action of 1.0 kN/m² (excluding slab self-weight) and a variable action of 2.0 kN/m². Characteristic concrete strength of slab,  $f_{ck} = 30 \text{N/mm}^2$ , the high yield steel reinforcement characteristic strength,  $f_{yk} = 500 \text{N/mm}^2$ , and unit weight of reinforced concrete is  $25 \text{kN/m}^3$ . It is assumed that the diameter of steel reinforcement bar = 12mm with slab thickness, h = 175 mm and nominal concrete cover for durability, fire and bond requirements being 30mm.
  - (a) Calculate the design moment  $M_{Ed}$ .

(6 marks)

(b) Calculate the area of steel reinforcement required in the design of this oneway spanning slab without having to verify for shear, deflection and cracking.

(10 marks)

- (c) Describe the purpose of introducing control joints in slab construction. (5 marks)
- (d) Discuss **ONE** (1) advantage and **ONE** (1) disadvantage of slab-on-grade. (4 marks)
- Q4 (a) Describe the fundamental principle of prestressing that is used to produce prestressed concrete. (4 marks)
  - (b) Illustrate with explanation **TWO** (2) methods used for prestressing of concrete members.

(8 marks)

(c) Examine the cost-benefit analysis of using prestressed concrete.

(5 marks)

(d) Describe the **FOUR (4)** methods of design in the use of Limit State Design of Structural Steelwork.

(8 marks)

- Q5 A universal steel beam is restrained at points A, B, C and D as shown in Figure Q5. The unfactored actions consists of 9kN/m permanent action that is unifromly distributed load (UDL),  $G_{k1}$ ; and 10kN/m temporary action UDL,  $G_{k2}$ .
  - (a) (i) Calculate the maximum applied bending moment of the beam M<sub>c</sub>, and sketch the bending moment and shear force diagrams.

(8 marks)

(ii) Using 533 x 210 x 109 UB with a design strength of  $f_y = 265 \text{N/mm}^2$  and section classification confirmed as being plastic, verify if the shear capacity and moment capacity of the steel beam are sufficient.

(6 marks)

(b) Illustrate the stress-strain relationship of structural steel.

(4 marks)

(c) Describe with the aid of a diagram the behaviour of a steel beam in bending with increasing moment.

(4 marks)

(d) Explain the action of torsional restraints, such as secondary load-carrying beams or tie beams at intervals along the beam span.

(3 marks)

#### FINAL EXAMINATION

SEMESTER/SESSION: SEM I/2013/2014 COURSE NAME

: STRUCTURAL DESIGN

PROGRAMME: 3BPC COURSE CODE: BPD 30802



### FIGURE Q1

#### FINAL EXAMINATION

SEMESTER/SESSION : SEM I/2013/2014

COURSE NAME

: STRUCTURAL DESIGN

PROGRAMME: 3BPC COURSE CODE: BPD 30802



## FIGURE Q5

## **Cross Sectional Area of Reinforcement**

Table 1: Cross Sectional Area (mm<sup>2</sup>) according to Size and Numbers of Bar

| Bar<br>Size |      | Perimeter (mm) |       |      |       |      |      |       |       |
|-------------|------|----------------|-------|------|-------|------|------|-------|-------|
| (mm)        | 1    | 2              | 3     | 4    | 5     | 6    | 7    | 8     | /     |
| 6           | 28.3 | 56.6           | 84.9  | 113  | 141   | 170  | 198  | 226   | 18.9  |
| 8           | 50.3 | 101            | 151   | 201  | 251   | 302  | 352  | 402   | 25.1  |
| 10          | 78.6 | 157            | 236   | 314  | 393   | 471  | 550  | 629   | 31.4  |
|             |      |                |       |      |       |      |      |       |       |
| 12          | 113  | 226            | 339   | 453  | 566   | 679  | 792  | 905   | 37.7  |
| 16          | 201  | 402            | 603   | 805  | 1006  | 1207 | 1408 | 1609  | 50.3  |
| 20          | 314  | 629            | 943   | 1257 | 1571  | 1886 | 2200 | 2514  | 62.9  |
| 25          | 101  | 000            | 1.470 | 1064 | 0.455 | 2016 |      |       |       |
| 25          | 491  | 982            | 1473  | 1964 | 2455  | 2946 | 3438 | 3929  | 78.6  |
| 32          | 805  | 1609           | 2414  | 3218 | 4023  | 4827 | 5632 | 6437  | 100.6 |
| 40          | 1257 | 2514           | 3771  | 5029 | 6286  | 7543 | 8800 | 10057 | 125.7 |

Table 2: Cross Sectional Area (mm<sup>2</sup>) for every meter width at distance between bar

| Bar  | Distance between Bar (mm) |       |       |       |      |      |      |      |      |  |  |
|------|---------------------------|-------|-------|-------|------|------|------|------|------|--|--|
| Size |                           |       |       |       |      |      |      |      |      |  |  |
| (mm) | 50                        | 75    | 100   | 125   | 150  | 175  | 200  | 250  | 300  |  |  |
| 6    | 566                       | 377   | 283   | 226   | 189  | 162  | 141  | 113  | 94   |  |  |
| 8    | 1006                      | 670   | 503   | 402   | 335  | 287  | 251  | 201  | 168  |  |  |
| 10   | 1571                      | 1048  | 786   | 629   | 524  | 449  | 393  | 314  | 262  |  |  |
|      |                           |       |       |       |      |      |      |      |      |  |  |
| 12   | 2263                      | 1509  | 1131  | 905   | 754  | 647  | 566  | 453  | 377  |  |  |
| 16   | 4023                      | 2682  | 2011  | 1609  | 1341 | 1149 | 1006 | 805  | 670  |  |  |
| 20   | 6286                      | 4190  | 3143  | 2514  | 2095 | 1796 | 1571 | 1257 | 1048 |  |  |
|      |                           |       |       |       |      |      |      |      |      |  |  |
| 25   | 9821                      | 6548  | 4911  | 3929  | 3274 | 2806 | 2455 | 1964 | 1637 |  |  |
| 32   | 16091                     | 10728 | 8046  | 6437  | 5364 | 4598 | 4023 | 3218 | 2682 |  |  |
| 40   | 25143                     | 16762 | 12571 | 10057 | 8381 | 7184 | 6286 | 5029 | 4190 |  |  |