

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION SEMESTER I SESSION 2013/2014

COURSE NAME

: PHYSIC 1

COURSE CODE

: DAS 14103

PROGRAMME

: 1 DAA / 1 DAM / 1 DAE / 1 DAU

EXAMINATION DATE

: DECEMBER 2013/JANUARY 2014

DURATION

: 2 ½ HOURS

INSTRUCTION

: ANSWER ALL QUESTIONS IN

SECTION A AND **TWO (2)**QUESTIONS IN SECTION B

THIS QUESTION PAPER CONSISTS OF **EIGHT (8)** PAGES

CONFIDENTIAL

SECTION A

Q1 (a) The power, P required to overcome external resistance when a vehicle is travelling at a speed v is given by the expression

$$P = av + bv^2$$

Where a and b are constants. [Given Power = work done / time taken]

- (i) State the definition of power.
- (ii) Determine the P dimensions and its SI units.
- (iii) Find the dimensions for the constants a and its SI units.
- (iv) Find the dimensions for the constants b and its SI units.

(10 marks)

(b) A 330 kg piano slides 3.6 m down a 28° inclined and is kept from accelerating by a man who is pushing back on it parallel to the incline as shown in **Figure Q1(b)**. The effective coefficient of kinetic friction is 0.40. Answer in 2 decimal places.

Given the force exerted by the man using the equation,

$$F_p = mg \sin \theta - F_f = mg (\sin \theta - \mu_k \cos \theta)$$

Determine the

- (i) Force exerted by the man, F_p .
- (ii) work done by the man on the piano, W
- (iii) work done by friction force, W_f
- (iv) work done by the gravity, W_g
- (v) net work done on the piano, W_{nett} .

(15 marks)

- Q2 (a) Which of the following statement is **TRUE** or **FALSE** for a body in Simple Harmonic Motion
 - (i) Oscillation with no friction forces acting on the system is damped oscillation.
 - (ii) The acceleration of a body undergoing simple harmonic motion is directly proportional to the displacement of the oscillation and always points towards the equilibrium position.
 - (iii) The velocity of un-damped Simple Harmonic Motion is maximum when the displacement is equal to the amplitude of the oscillation.
 - (iv) The kinetic energy of the body undergoing SHM is maximum when it reaches equilibrium position.
 - (v) Period is the time for two complete oscillations for an object moving with SHM.
 - (vi) Angular displacement is the change of time of a rotating body as measured through which it rotates.

(6 marks)

- (b) It is known that a load with a mass of 200 g will stretch a spring 10.0 cm. The spring is then stretched an additional 5.0 cm and released. Determine the
 - (i) spring constant k of oscillation
 - (ii) angular frequency,ω of oscillation
 - (iii) amplitude, A, of oscillation
 - (iv) period, T of oscillation
 - (v) frequency, f of oscillation
 - (vi) maximum velocity, v_{max}
 - (vii) maximum acceleration, a_{max}
 - (viii) Write equation for the displacement of x as a function of time.
 - (ix) Velocity at t = 0.20 s.

(19 marks)

SECTION B

- Q3 (a) A ball is thrown from the top of a building is given an initial velocity of 10.0 ms⁻¹ straight upward. The building is 30.0 m high and the ball just misses the edge of the roof on its way down as shown in **Figure Q3 (a)**. Determine the
 - (i) maximum height of the stone from point A.
 - (ii) time taken from point A to C.
 - (iii) time taken from point A to D.
 - (iv) velocity of the stone when it reaches point D.

(12 marks)

- (b) A trained dolphin leaps from the water with an initial speed of 12 ms⁻¹. It jumps directly toward a ball held by the trainer a horizontal distance of 5.50 m away and a vertical distance of 4.10 m above the water. In an absence of gravity the dolphin would move in a straight line to the ball and catch it but because of gravity the dolphin follows a parabolic path well below the ball's initial position as shown in **Figure Q3 (b)**. Determine the
 - (i) angle at which the dolphin leaves the water.
 - (ii) time it takes for the dolphin when the x position of the dolphin, x_d is equal to 5.50 m.
 - (iii) y position of the dolphin, y_d at t in Q3(b)(ii).
 - (iv) y position of the ball, y_b at t in **Q3(b)(ii)**. Given the ball equation of motion is $y_b = h - \frac{1}{2} gt^2$, Use $g = 9.81 \text{ ms}^{-2}$ throughout]

(13 marks)

- Q4 (a) A traction device employing three pulleys is applied to a broken leg as shown in **Figure Q4 (a)**. The middle pulley is attached to the sole of the foot and a mass m is supplies the tension in the ropes. Find the value of the mass m if the force on the sole of the foot by the middle pulley is to be 165N. Determine the
 - (i) force along the horizontal motion, F_x
 - (ii) force along the vertical motion, F_{ν}
 - (iii) tension, T in the system.
 - (iv) mass of the object, m.

(12 marks)

- (b) A pack of five arctic wolves are fighting over the carcass of a dead polar bear. A top view the magnitude and direction of the three forces are shown in **Figure Q4 (b).**
 - (i) Find the force along horizontal motion, F_x .
 - (ii) Find the force along vertical motion, F_v .
 - (iii) Determine the resultant or net force acting upon the carcass.
 - (iv) Determine the direction of the net force acting upon the carcass.
 - (v) Find the acceleration of the 750 kg polar bear carcass.

(13 marks)

- Q5 (a) Define
 - (i) Angular displacement.
 - (ii) Angular velocity.
 - (iii) Angular acceleration.

(6 marks)

(b) A bicycle wheel has an initial angular velocity of 1.50 rads⁻¹. Given:

$$\omega_0 = 1.50 \frac{\text{rad}}{\text{s}}, \alpha = 0.3 \frac{\text{rad}}{\text{s}^2}, t = 2.5 \text{ s}$$

- (i) If its angular acceleration is constant and equals to 0.30 rad^{-2} , what is its angular velocity at t = 2.50 s?
- (ii) Through what angle has the wheel turned between t = 0 and t = 2.50 s? (6 marks)
- (c) An old phonograph record rotates clockwise at 33 ½ rpm. (revolution per minute). If a CD rotates at 210 rpm and it slows down uniformly to 100 rpm while making 10 revolutions. Find the
 - (i) angular velocity for phonograph, give the answer in rad per second
 - (ii) angular accerelation for the CD, give the answer in rad per second per second (rads⁻²).
 - (iii) From **Q5** (c)(ii), find the time required to turn through these 10 revolutions.

(13 marks)

- END OF QUESTION -

FINAL EXAMINATION

SEMESTER / SESSION : SEM I / 2013/2014

PROGRAMME

: 1 DAA /1DAM 1 DAE/1 DAU

COURSE: PHYSICS 1

COURSE CODE

: DAS 14103

FIGURE Q1(b)

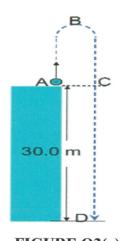


FIGURE Q3(a)

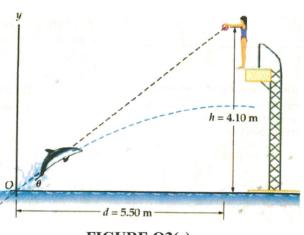
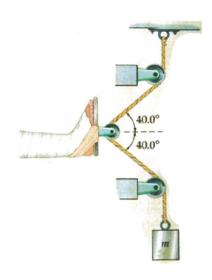


FIGURE Q3(c)

FINAL EXAMINATION

SEMESTER / SESSION : SEM I / 2013/2014


PROGRAMME

: 1 DAA /1DAM 1 DAE/1 DAU

COURSE: PHYSICS 1

COURSE CODE

: DAS 14103

FIGURE Q4 (a)

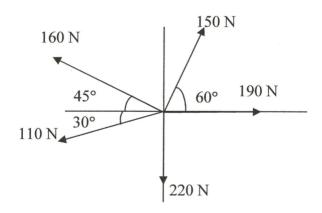


FIGURE Q4 (b)

FORMULA

SEMESTER / SESSION : SEM I / 2013/2014

PROGRAMME

: 1 DAA /1DAM

COURSE: PHYSICS 1

COURSE CODE : DAS 14103

1 DAE/1 DAU DAS 14103

Gravity acceleration, $g = 9.81 \text{ m/s}^2$	1 feet = 12 in 1 feet =30.48cm=0.3048 m 1 mi = 1.609 km	$P = m \cdot v$
$W = F \cdot s = Fs \cos \theta$	$E_u = \frac{1}{2}kx^2 = \frac{1}{2}m\omega^2 x^2$	$s = r\theta$
$K = \frac{1}{2}mv^2$	$E_J = E_k + E_u = \frac{1}{2}m\omega^2 A^2$	$v = r\omega$
U = mgh	$R = \sqrt{R_x^2 + R_y^2}$	$a = r\alpha$
ΔK = - ΔU	$\theta = \tan^{-1} \left(\frac{R_y}{R_x} \right)$	$\omega = \frac{d\theta}{dt}$
$W_{\rm n} = \Delta K$	v = u + at	$\alpha = \frac{d\omega}{dt}$
$\frac{1}{2}mv_2^2 - \frac{1}{2}mv_1^2 = -(mgh_2 - mgh_1)$	$s = ut + \frac{1}{2}at^2$	$a_c = \frac{v^2}{r} = \omega^2 r$
$a = -\omega^2 \cdot x$	$v^2 = u^2 + 2as$	$a = r\sqrt{\omega^4 + \alpha^2}$
$f = \frac{1}{T} = \frac{\omega}{2\pi}$	$\sum F = ma$	$\omega = \omega_o + \alpha t$
$v = \omega \sqrt{A^2 - x^2}$	W = mg	$\theta = \omega_o t + \frac{1}{2}\alpha \cdot t^2$
$E_k = \frac{1}{2}mv^2 = \frac{1}{2}m\omega^2(A^2 - x^2)$	$f_k = \mu_k.N$ $f_s = \mu_s.N$	$\omega^2 = \omega_o^2 + 2\alpha \cdot \Delta\theta$